Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

Overview

PWC

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION

This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION. This repo includes all source codes (including data preprocessing code, training code and testing code). Have fun!

Data preparation

We use the training data of Adobe Image Matting to train our model. Please follow the instruction of Adobe Image Matting (AIM) to obtain the training foreground and background as well as the testing data.

Please modify the variable train_path_base in matting/utils/config.py such that the original AIM training foreground images are in the folder train_path_base + "/fg", and place the background images in the folder train_path_base + "/coco_bg", and place the ground truth alpha images in the folder train_path_base + "/alpha".

Please modify the variable test_path_base in matting/utils/config.py to locate the AIM testing data (also called Composition-1k testing data) such that the testing images are in the folder test_path_base + "/merged", and the testing trimaps are in the folder test_path_base + "/trimaps", and the testing ground truth alphas are in the folder test_path_base + "/alpha_copy".

Foreground re-estimation

As described in our paper, the foreground of Adobe Image Matting can be improved to be more consistent with the local smoothness assumption. To obtain the re-estimated foreground by our algorithm, just run python tools/reestimate_foreground_final.py.

Training

To train the model, first click here to download the pretrained encoder model resnetv1d50_b32x8_imagenet_20210531-db14775a.pth from the celebrated repo mmclassification. Place resnetv1d50_b32x8_imagenet_20210531-db14775a.pth in the folder pretrained. Then just run bash train.sh. Without bells and whistles, you will get the state-of-the-art model trained solely on this dataset! By default, the model is trained for the 200 epochs. Note that the reported results in our paper are the models trained for 100 epochs. Thus, you have a great chance to obtain a better model than that reported in our paper!

Testing

In this link, we provide the checkpoint with best performance reported in our paper.

To test our model on the Composition-1k testing data, please place the checkpoint in the folder model. Please change the 105 line of the file matting/models/model.py to for the_step in range(1). This modification in essense disables the backpropagating refinement, or else the testing process costs much time. Then just run bash test.sh.

To test our model on the testing set of AlphaMatting, just place the checkpoint in the folder model and run bash test_alpha_matting.sh.

Acknowledgments

If you use techniques in this project in your research, please cite our paper.

@misc{wang2021ImprovingDeepImageMatting,
      title={Improving Deep Image Matting Via Local Smoothness Assumption}, 
      author={Rui Wang and Jun Xie and Jiacheng Han and Dezhen Qi},
      year={2021},
      eprint={2112.13809},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

If you have any question, please feel free to raise issues!

Below I list some other open source (or partly open source) projects on image matting. I learn a lot from these projects. (For a more comprehensive list of projects on image matting, see wchstrife/Awesome-Image-Matting.) Thank you for sharing your codes! I am proud to be one of you!

Owner
电线杆
电线杆
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023