This repository collects 100 papers related to negative sampling methods.

Overview

Negative-Sampling-Paper

This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommendation Systems (RS), Computer Vision (CV),Natural Language Processing (NLP) and Contrastive Learning (CL).

Existing negative sampling methods can be roughly divided into five categories: Static Negative Sampling, Hard Negative Sampling, Adversarial Sampling, Graph-based Sampling and Additional data enhanced Sampling.

Category

Static Negative Sampling

  • BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI(2009) [RS] [PDF]

  • Real-Time Top-N Recommendation in Social Streams. RecSys(2012) [RS] [PDF]

  • Distributed Representations of Words and Phrases and their Compositionality. NIPS(2013) [NLP] [PDF]

  • word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method. arXiv(2014) [NLP] [PDF]

  • Deepwalk: Online learning of social representations. KDD(2014) [GRL] [PDF]

  • LINE: Large-scale Information Network Embedding. WWW(2015) [GRL] [PDF]

  • Context- and Content-aware Embeddings for Query Rewriting in Sponsored Search. SIGIR(2015) [NLP] [PDF]

  • node2vec: Scalable Feature Learning for Networks. KDD(2016) [NLP] [PDF]

  • Fast Matrix Factorization for Online Recommendation with Implicit Feedback. SIGIR(2016) [RS] [PDF]

  • Word2vec applied to Recommendation: Hyperparameters Matter. RecSys(2018) [RS] [PDF]

  • General Knowledge Embedded Image Representation Learning. TMM(2018) [CV] [PDF]

  • Alleviating Cold-Start Problems in Recommendation through Pseudo-Labelling over Knowledge Graph. WSDM(2021) [RS] [PDF]

Hard Negative Sampling

  • Example-based learning for view-based human face detection. TPAMI(1998) [CV] [PDF]

  • Adaptive Importance Sampling to Accelerate Training of a Neural Probabilistic Language Model. T-NN(2008) [NLP] [PDF]

  • Optimizing Top-N Collaborative Filtering via Dynamic Negative Item Sampling. SIGIR(2013) [RS] [PDF]

  • Bootstrapping Visual Categorization With Relevant Negatives. TMM(2013) [CV] [PDF]

  • Improving Pairwise Learning for Item Recommendation from Implicit Feedback. WSDM(2014) [RS] [PDF]

  • Improving Latent Factor Models via Personalized Feature Projection for One Class Recommendation. CIKM(2015) [RS] [PDF]

  • Noise-Contrastive Estimation for Answer Selection with Deep Neural Networks. CIKM(2016) [NLP] [PDF]

  • RankMBPR: Rank-aware Mutual Bayesian Personalized Ranking for Item Recommendation. WAIM(2016) [RS] [PDF]

  • Training Region-Based Object Detectors With Online Hard Example Mining. CVPR(2016) [CV] [PDF]

  • Hard Negative Mining for Metric Learning Based Zero-Shot Classification. ECCV(2016) [ML] [PDF]

  • Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining. Sensors(2017) [CV] [PDF]

  • WalkRanker: A Unified Pairwise Ranking Model with Multiple Relations for Item Recommendation. AAAI(2018) [RS] [PDF]

  • Bootstrapping Entity Alignment with Knowledge Graph Embedding. IJCAI(2018) [KGE] [PDF]

  • Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors. CVPR(2018) [CV] [PDF]

  • NSCaching: Simple and Efficient Negative Sampling for Knowledge Graph Embedding. ICDE(2019) [KGE] [PDF]

  • Meta-Transfer Learning for Few-Shot Learning. CVPR(2019) [CV] [PDF]

  • ULDor: A Universal Lesion Detector for CT Scans with Pseudo Masks and Hard Negative Example Mining. ISBI(2019) [CV] [PDF]

  • Distributed representation learning via node2vec for implicit feedback recommendation. NCA(2020) [NLP] [PDF]

  • Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering. arXiv(2020) [RS] [PDF]

  • Hard Negative Mixing for Contrastive Learning. arXiv(2020) [CL] [PDF]

  • Bundle Recommendation with Graph Convolutional Networks. SIGIR(2020) [RS] [PDF]

  • Supervised Contrastive Learning. NIPS(2020) [CL] [PDF]

  • Curriculum Meta-Learning for Next POI Recommendation. KDD(2021) [RS] [PDF]

  • Boosting the Speed of Entity Alignment 10×: Dual Attention Matching Network with Normalized Hard Sample Mining. WWW(2021) [KGE] [PDF]

  • Hard-Negatives or Non-Negatives? A Hard-Negative Selection Strategy for Cross-Modal Retrieval Using the Improved Marginal Ranking Loss. ICCV(2021) [CV] [PDF]

Adversarial Sampling

  • Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. NIPS(2015) [CV] [PDF]

  • IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models. SIGIR(2017) [IR] [PDF]

  • SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI(2017) [NLP] [PDF]

  • KBGAN: Adversarial Learning for Knowledge Graph Embeddings. NAACL(2018) [KGE] [PDF]

  • Neural Memory Streaming Recommender Networks with Adversarial Training. KDD(2018) [RS] [PDF]

  • GraphGAN: Graph Representation Learning with Generative Adversarial Nets. AAAI(2018) [GRL] [PDF]

  • CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks. CIKM(2018) [RS] [PDF]

  • Adversarial Contrastive Estimation. ACL(2018) [NLP] [PDF]

  • Incorporating GAN for Negative Sampling in Knowledge Representation Learning. AAAI(2018) [KGE] [PDF]

  • Exploring the potential of conditional adversarial networks for optical and SAR image matching. IEEE J-STARS(2018) [CV] [PDF]

  • Deep Adversarial Metric Learning. CVPR(2018) [CV] [PDF]

  • Adversarial Detection with Model Interpretation. KDD(2018) [ML] [PDF]

  • Adversarial Sampling and Training for Semi-Supervised Information Retrieval. WWW(2019) [IR] [PDF]

  • Deep Adversarial Social Recommendation. IJCAI(2019) [RS] [PDF]

  • Adversarial Learning on Heterogeneous Information Networks. KDD(2019) [HIN] [PDF]

  • Regularized Adversarial Sampling and Deep Time-aware Attention for Click-Through Rate Prediction. CIKM(2019) [RS] [PDF]

  • Adversarial Knowledge Representation Learning Without External Model. IEEE Access(2019) [KGE] [PDF]

  • Adversarial Binary Collaborative Filtering for Implicit Feedback. AAAI(2019) [RS] [PDF]

  • ProGAN: Network Embedding via Proximity Generative Adversarial Network. KDD(2019) [GRL] [PDF]

  • Generating Fluent Adversarial Examples for Natural Languages. ACL(2019) [NLP] [PDF]

  • IPGAN: Generating Informative Item Pairs by Adversarial Sampling. TNLLS(2020) [RS] [PDF]

  • Contrastive Learning with Adversarial Examples. arXiv(2020) [CL] [PDF]

  • PURE: Positive-Unlabeled Recommendation with Generative Adversarial Network. KDD(2021) [RS] [PDF]

  • Negative Sampling for Knowledge Graph Completion Based on Generative Adversarial Network. ICCCI(2021) [KGE] [PDF]

  • Synthesizing Adversarial Negative Responses for Robust Response Ranking and Evaluation. arXiv(2021) [NLP] [PDF]

  • Adversarial Feature Translation for Multi-domain Recommendation. KDD(2021) [RS] [PDF]

  • Adversarial training regularization for negative sampling based network embedding. Information Sciences(2021) [GRL] [PDF]

  • Adversarial Caching Training: Unsupervised Inductive Network Representation Learning on Large-Scale Graphs. TNNLS(2021) [GRL] [PDF]

  • A Robust and Generalized Framework for Adversarial Graph Embedding. arxiv(2021) [GRL] [PDF]

  • Instance-wise Hard Negative Example Generation for Contrastive Learning in Unpaired Image-to-Image Translation. ICCV(2021) [CV] [PDF]

Graph-based Sampling

  • ACRec: a co-authorship based random walk model for academic collaboration recommendation. WWW(2014) [RS] [PDF]

  • GNEG: Graph-Based Negative Sampling for word2vec. ACL(2018) [NLP] [PDF]

  • Graph Convolutional Neural Networks for Web-Scale Recommender Systems. KDD(2018) [RS] [PDF]

  • SamWalker: Social Recommendation with Informative Sampling Strategy. WWW(2019) [RS] [PDF]

  • Understanding Negative Sampling in Graph Representation Learning. KDD(2020) [GRL] [PDF]

  • Reinforced Negative Sampling over Knowledge Graph for Recommendation. WWW(2020) [RS] [PDF]

  • MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems. KDD(2021) [RS] [PDF]

  • SamWalker++: recommendation with informative sampling strategy. TKDE(2021) [RS] [PDF]

  • DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN. CIKM(2021) [RS] [PDF]

Additional data enhanced Sampling

  • Leveraging Social Connections to Improve Personalized Ranking for Collaborative Filtering. CIKM(2014) [RS] [PDF]

  • Social Recommendation with Strong and Weak Ties. CIKM(2016) [RS] [PDF]

  • Bayesian Personalized Ranking with Multi-Channel User Feedback. RecSys(2016) [RS] [PDF]

  • Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation. ICTAI(2017) [RS] [PDF]

  • A Personalised Ranking Framework with Multiple Sampling Criteria for Venue Recommendation. CIKM(2017) [RS] [PDF]

  • An Improved Sampling for Bayesian Personalized Ranking by Leveraging View Data. WWW(2018) [RS] [PDF]

  • Reinforced Negative Sampling for Recommendation with Exposure Data. IJCAI(2019) [RS] [PDF]

  • Geo-ALM: POI Recommendation by Fusing Geographical Information and Adversarial Learning Mechanism. IJCAI(2019) [RS] [PDF]

  • Bayesian Deep Learning with Trust and Distrust in Recommendation Systems. WI(2019) [RS] [PDF]

  • Socially-Aware Self-Supervised Tri-Training for Recommendation. arXiv(2021) [RS] [PDF]

  • DGCN: Diversified Recommendation with Graph Convolutional Networks. WWW(2021) [RS] [PDF]

Future Outlook

False Negative Problem

  • Incremental False Negative Detection for Contrastive Learning. arXiv(2021) [CL] [PDF]

  • Graph Debiased Contrastive Learning with Joint Representation Clustering. IJCAI(2021) [GRL & CL] [PDF]

  • Relation-aware Graph Attention Model With Adaptive Self-adversarial Training. AAAI(2021) [KGE] [PDF]

Curriculum Learning

  • On The Power of Curriculum Learning in Training Deep Networks. ICML(2016) [CV] [PDF]

  • Graph Representation with Curriculum Contrastive Learning. IJCAI(2021) [GRL & CL] [PDF]

Negative Sampling Ratio

  • Are all negatives created equal in contrastive instance discrimination. arXiv(2020) [CL] [PDF]

  • SimpleX: A Simple and Strong Baseline for Collaborative Filtering. CIKM(2021) [RS] [PDF]

  • Rethinking InfoNCE: How Many Negative Samples Do You Need. arXiv(2021) [CL] [PDF]

Debiased Sampling

  • Debiased Contrastive Learning. NIPS(2020) [CL] [PDF]

  • Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems. KDD(2021) [RS] [PDF]

Non-Sampling

  • Beyond Hard Negative Mining: Efficient Detector Learning via Block-Circulant Decomposition. ICCV(2013) [CV] [PDF]

  • Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation. AAAI(2020) [RS] [PDF]

  • Efficient Non-Sampling Knowledge Graph Embedding. WWW(2021) [KGE] [PDF]

Owner
RUCAIBox
An enthusiastic group that aims to create beautiful things with AI
RUCAIBox
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022