Explaining neural decisions contrastively to alternative decisions.

Overview

Contrastive Explanations for Model Interpretability

This is the repository for the paper "Contrastive Explanations for Model Interpretability", about explaining neural model decisions against alternative decisions.

Authors: Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel, Yanai Elazar, Yejin Choi, Yoav Goldberg

Getting Started

Setup

conda create -n contrastive python=3.8
conda activate contrastive
pip install allennlp==1.2.0rc1
pip install allennlp-models==1.2.0rc1.dev20201014
pip install jupyterlab
pip install pandas
bash scripts/download_data.sh

Contrastive projection

If you're here just to know how we implemented contrastive projection, here it is:

u = classifier_w[fact_idx] - classifier_w[foil_idx]
contrastive_projection = np.outer(u, u) / np.dot(u, u)

Very simple :)

contrastive_projection is a projection matrix that projects the model's latent representation of some example h into the direction of h that separates the logits of the fact and foil.

Training MNLI/BIOS models

bash scripts/train_sequence_classification.sh 

Highlight ranking (Sections 4.3, 5.3)

Run the notebooks/mnli-highlight-featurerank.ipynb or notebooks/bios-highlight-featurerank.ipynb jupyter notebooks.

These notebooks load the respective models, and then run the highlight ranking procedure.

Foil ranking (Section 4.1)

First, cache the model's encodings of the dev set examples:

bash scripts/cache_encodings_bios.sh

Then run the notebooks/bios-highlight-foilrank.ipynb notebook.

Contrastive decision making (Section 4.4)

First, cache the model's encodings of the dev set examples (skip if already executed):

bash scripts/cache_encodings_bios.sh

Then run the notebooks/bios-foilpower.ipynb notebook.

Foil ranking for BIOS concepts (Section 4.2)

First, generate concept labels as a numpy matrix from the BIOS dataset:

python scripts/bios_concepts.py --data-path data/bios/train.jsonl --concept-path experiments/models/bios/roberta-large/concepts/gender-male/train
python scripts/bios_concepts.py --data-path data/bios/dev.jsonl --concept-path experiments/models/bios/roberta-large/concepts/gender-male/dev
python scripts/bios_concepts.py --data-path data/bios/test.jsonl --concept-path experiments/models/bios/roberta-large/concepts/gender-male/test

Then, run Amnesic Probing:

Foil ranking for MNLI concepts (Section 5.2)

Overlap concept:

First, generate concept labels as a numpy matrix from the BIOS dataset:

python scripts/mnli_concepts.py --data-path data/mnli/train.jsonl --concept-path experiments/models/mnli/roberta-large/concepts/overlap/train
python scripts/mnli_concepts.py --data-path data/mnli/dev.jsonl --concept-path experiments/models/mnli/roberta-large/concepts/overlap/dev
python scripts/mnli_concepts.py --data-path data/mnli/test.jsonl --concept-path experiments/models/mnli/roberta-large/concepts/overlap/test

Then, run Amnesic Probing:

Negation concept:

The examples we used for the negation concept analysis are:

data/nli_negation_concept/entailment.jsonl  # entailment instances
data/nli_negation_concept/entailment_with_negation.jsonl  # the above entailment instances, paraphrased with negation words
data/nli_negation_concept/neutral.jsonl  # neutral instances
data/nli_negation_concept/neutral_with_negation.jsonl  # the above neutral instances, paraphrased with negation words

To analyze them with respect to the trained MultiNLI model, run the notebook notebooks/mnli-negation-foilrank.ipynb.

Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022