You Only Look Once for Panopitic Driving Perception

Overview

You Only 👀 Once for Panoptic ​ 🚗 Perception

You Only Look at Once for Panoptic driving Perception

by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wang 📧 School of EIC, HUST

( 📧 ) corresponding author.

arXiv technical report (arXiv 2108.11250)


中文文档

The Illustration of YOLOP

yolop

Contributions

  • We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the BDD100K dataset.

  • We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.

Results

PWC

Traffic Object Detection Result

Model Recall(%) mAP50(%) Speed(fps)
Multinet 81.3 60.2 8.6
DLT-Net 89.4 68.4 9.3
Faster R-CNN 77.2 55.6 5.3
YOLOv5s 86.8 77.2 82
YOLOP(ours) 89.2 76.5 41

Drivable Area Segmentation Result

Model mIOU(%) Speed(fps)
Multinet 71.6 8.6
DLT-Net 71.3 9.3
PSPNet 89.6 11.1
YOLOP(ours) 91.5 41

Lane Detection Result:

Model mIOU(%) IOU(%)
ENet 34.12 14.64
SCNN 35.79 15.84
ENet-SAD 36.56 16.02
YOLOP(ours) 70.50 26.20

Ablation Studies 1: End-to-end v.s. Step-by-step:

Training_method Recall(%) AP(%) mIoU(%) Accuracy(%) IoU(%)
ES-W 87.0 75.3 90.4 66.8 26.2
ED-W 87.3 76.0 91.6 71.2 26.1
ES-D-W 87.0 75.1 91.7 68.6 27.0
ED-S-W 87.5 76.1 91.6 68.0 26.8
End-to-end 89.2 76.5 91.5 70.5 26.2

Ablation Studies 2: Multi-task v.s. Single task:

Training_method Recall(%) AP(%) mIoU(%) Accuracy(%) IoU(%) Speed(ms/frame)
Det(only) 88.2 76.9 - - - 15.7
Da-Seg(only) - - 92.0 - - 14.8
Ll-Seg(only) - - - 79.6 27.9 14.8
Multitask 89.2 76.5 91.5 70.5 26.2 24.4

Notes:

  • The works we has use for reference including Multinet (paper,code),DLT-Net (paper),Faster R-CNN (paper,code),YOLOv5scode) ,PSPNet(paper,code) ,ENet(paper,code) SCNN(paper,code) SAD-ENet(paper,code). Thanks for their wonderful works.
  • In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.

Visualization

Traffic Object Detection Result

detect result

Drivable Area Segmentation Result

Lane Detection Result

Notes:

  • The visualization of lane detection result has been post processed by quadratic fitting.

Project Structure

├─inference
│ ├─images   # inference images
│ ├─output   # inference result
├─lib
│ ├─config/default   # configuration of training and validation
│ ├─core    
│ │ ├─activations.py   # activation function
│ │ ├─evaluate.py   # calculation of metric
│ │ ├─function.py   # training and validation of model
│ │ ├─general.py   #calculation of metric、nms、conversion of data-format、visualization
│ │ ├─loss.py   # loss function
│ │ ├─postprocess.py   # postprocess(refine da-seg and ll-seg, unrelated to paper)
│ ├─dataset
│ │ ├─AutoDriveDataset.py   # Superclass dataset,general function
│ │ ├─bdd.py   # Subclass dataset,specific function
│ │ ├─hust.py   # Subclass dataset(Campus scene, unrelated to paper)
│ │ ├─convect.py 
│ │ ├─DemoDataset.py   # demo dataset(image, video and stream)
│ ├─models
│ │ ├─YOLOP.py    # Setup and Configuration of model
│ │ ├─light.py    # Model lightweight(unrelated to paper, zwt)
│ │ ├─commom.py   # calculation module
│ ├─utils
│ │ ├─augmentations.py    # data augumentation
│ │ ├─autoanchor.py   # auto anchor(k-means)
│ │ ├─split_dataset.py  # (Campus scene, unrelated to paper)
│ │ ├─utils.py  # logging、device_select、time_measure、optimizer_select、model_save&initialize 、Distributed training
│ ├─run
│ │ ├─dataset/training time  # Visualization, logging and model_save
├─tools
│ │ ├─demo.py    # demo(folder、camera)
│ │ ├─test.py    
│ │ ├─train.py    
├─toolkits
│ │ ├─deploy    # Deployment of model
│ │ ├─datapre    # Generation of gt(mask) for drivable area segmentation task
├─weights    # Pretraining model

Requirement

This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch

See requirements.txt for additional dependencies and version requirements.

pip install -r requirements.txt

Data preparation

Download

We recommend the dataset directory structure to be the following:

# The id represent the correspondence relation
├─dataset root
│ ├─images
│ │ ├─train
│ │ ├─val
│ ├─det_annotations
│ │ ├─train
│ │ ├─val
│ ├─da_seg_annotations
│ │ ├─train
│ │ ├─val
│ ├─ll_seg_annotations
│ │ ├─train
│ │ ├─val

Update the your dataset path in the ./lib/config/default.py.

Training

You can set the training configuration in the ./lib/config/default.py. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch_size).

If you want try alternating optimization or train model for single task, please modify the corresponding configuration in ./lib/config/default.py to True. (As following, all configurations is False, which means training multiple tasks end to end).

# Alternating optimization
_C.TRAIN.SEG_ONLY = False           # Only train two segmentation branchs
_C.TRAIN.DET_ONLY = False           # Only train detection branch
_C.TRAIN.ENC_SEG_ONLY = False       # Only train encoder and two segmentation branchs
_C.TRAIN.ENC_DET_ONLY = False       # Only train encoder and detection branch

# Single task 
_C.TRAIN.DRIVABLE_ONLY = False      # Only train da_segmentation task
_C.TRAIN.LANE_ONLY = False          # Only train ll_segmentation task
_C.TRAIN.DET_ONLY = False          # Only train detection task

Start training:

python tools/train.py

Evaluation

You can set the evaluation configuration in the ./lib/config/default.py. (Including: batch_size and threshold value for nms).

Start evaluating:

python tools/test.py --weights weights/End-to-end.pth

Demo Test

We provide two testing method.

Folder

You can store the image or video in --source, and then save the reasoning result to --save-dir

python tools/demo.py --source inference/images

Camera

If there are any camera connected to your computer, you can set the source as the camera number(The default is 0).

python tools/demo.py --source 0

Demonstration

input output

Deployment

Our model can reason in real-time on Jetson Tx2, with Zed Camera to capture image. We use TensorRT tool for speeding up. We provide code for deployment and reasoning of model in ./toolkits/deploy.

Segmentation Label(Mask) Generation

You can generate the label for drivable area segmentation task by running

python toolkits/datasetpre/gen_bdd_seglabel.py

Model Transfer

Before reasoning with TensorRT C++ API, you need to transfer the .pth file into binary file which can be read by C++.

python toolkits/deploy/gen_wts.py

After running the above command, you obtain a binary file named yolop.wts.

Running Inference

TensorRT needs an engine file for inference. Building an engine is time-consuming. It is convenient to save an engine file so that you can reuse it every time you run the inference. The process is integrated in main.cpp. It can determine whether to build an engine according to the existence of your engine file.

Third Parties Resource

Citation

If you find our paper and code useful for your research, please consider giving a star and citation 📝 :

@misc{2108.11250,
Author = {Dong Wu and Manwen Liao and Weitian Zhang and Xinggang Wang},
Title = {YOLOP: You Only Look Once for Panoptic Driving Perception},
Year = {2021},
Eprint = {arXiv:2108.11250},
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022