Deep learning model, heat map, data prepo

Overview

DEEP LEARNING ON USA DEMOCRATES DEBATE

By Pamela Dekas

import sys
import csv
import re 
import nltk
import string
import unicodedata
from textblob import TextBlob
from collections import Counter
import pandas as pd
import numpy as np
from wordcloud import WordCloud
from nltk.classify import * 
from nltk.corpus import stopwords
from sklearn.metrics import f1_score, roc_auc_score
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import word_tokenize
import nltk.classify.util
import matplotlib.pyplot as plt
from string import punctuation 
from nltk.corpus import stopwords
from wordcloud import STOPWORDS
import os
from sklearn.model_selection import train_test_split
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence, text
from keras.callbacks import EarlyStopping
Using TensorFlow backend.



---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)


   
     in 
    
     ()
     22 import os
     23 from sklearn.model_selection import train_test_split
---> 24 from keras.datasets import imdb
     25 from keras.models import Sequential
     26 from keras.layers import Dense


~\Anaconda3\lib\site-packages\keras\__init__.py in 
     
      ()
      1 from __future__ import absolute_import
      2 
----> 3 from . import utils
      4 from . import activations
      5 from . import applications


~\Anaconda3\lib\site-packages\keras\utils\__init__.py in 
      
       ()
      4 from . import data_utils
      5 from . import io_utils
----> 6 from . import conv_utils
      7 from . import losses_utils
      8 from . import metrics_utils


~\Anaconda3\lib\site-packages\keras\utils\conv_utils.py in 
       
        () 7 from six.moves import range 8 import numpy as np ----> 9 from .. import backend as K 10 11 ~\Anaconda3\lib\site-packages\keras\backend\__init__.py in 
        
         () ----> 1 from .load_backend import epsilon 2 from .load_backend import set_epsilon 3 from .load_backend import floatx 4 from .load_backend import set_floatx 5 from .load_backend import cast_to_floatx ~\Anaconda3\lib\site-packages\keras\backend\load_backend.py in 
         
          () 88 elif _BACKEND == 'tensorflow': 89 sys.stderr.write('Using TensorFlow backend.\n') ---> 90 from .tensorflow_backend import * 91 else: 92 # Try and load external backend. ~\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in 
          
           () 52 53 # Private TF Keras utils ---> 54 get_graph = tf_keras_backend.get_graph 55 # learning_phase_scope = tf_keras_backend.learning_phase_scope # TODO 56 name_scope = tf.name_scope AttributeError: module 'tensorflow.python.keras.backend' has no attribute 'get_graph' 
          
         
        
       
      
     
    
   
speech = pd.read_csv('debate_transcripts_v3_2020-02-26.csv',encoding= 'unicode_escape')
df= pd.DataFrame(speech)
dem_speakers = df["speaker"]
number_of_speakers = len(set(dem_speakers))
print("Nombre de speakers:",number_of_speakers, "speakers")

# Mean duration of speech.
print("temps moyen de parole:",np.mean(df["speaking_time_seconds"]), "seconds")
print("Dataset size:", len(df))
Nombre de speakers: 106 speakers
temps moyen de parole: 16.49230769230769 seconds
Dataset size: 5911
df.info()

   
    
RangeIndex: 5911 entries, 0 to 5910
Data columns (total 6 columns):
date                     5911 non-null object
debate_name              5911 non-null object
debate_section           5911 non-null object
speaker                  5911 non-null object
speech                   5911 non-null object
speaking_time_seconds    5395 non-null float64
dtypes: float64(1), object(5)
memory usage: 277.2+ KB

   
df.groupby('speaker')['speaking_time_seconds'].sum(level=0).nlargest(10).plot.bar()
plt.title('Repartition par temps de parole')
plt.show()

png

debate_time = df.groupby(by=['speaker', 'date']).speaking_time_seconds.sum().nlargest(15)
debate_time.plot()

   

   

png

suppresion des colonnes qui ne seront pas utilisé dans la suite du projet et creation du dataset final###

df=df.drop(['date','debate_name','debate_section','speaking_time_seconds'],1)
df.head(5)
speaker speech
0 Norah O�Donnell Good evening and welcome, the Democratic presi...
1 Gayle King And Super Tuesday is just a week away and this...
2 Norah O�Donnell And CBS News is proud to bring you this debate...
3 Gayle King And we are partnering tonight also with Twitte...
4 Norah O�Donnell Now, here are the rules for the next two hours...

PREPROCESSING

import nltk 
nltk.download('punkt')
stopwords = nltk.corpus.stopwords.words('english')
Tailored_stopwords=('im','ive','mr','weve','dont','well','will','make','us','we',
                      'I','make','got','need','want','think',
                      'going','go','one','thank','going',
                      'way','say','every','re','us','first',
                     'now','said','know','look','done','take',
                     'number','two','three','s','m',"t",
                      'let','don','tell','ve','im','mr','put','maybe','whether','many', 'll','around','thing','Secondly','doesn','lot')
#stopwords = nltk.corpus.stopwords.words('english')
stopwords = set(STOPWORDS)
stopwords= stopwords.union(Tailored_stopwords)
[nltk_data] Downloading package punkt to C:\Users\pamel.DESKTOP-O19M7N
[nltk_data]     F\AppData\Roaming\nltk_data...
[nltk_data]   Package punkt is already up-to-date!
def Text_cleansing(speech):
    speech = re.sub('@[A-Za-z0–9]+', '', str(speech))
    speech = re.sub('#', '', speech) # Enlever les '#' hash tag
    speech = re.sub('rt', '', speech)
    speech=re.sub(',',' ', speech)
    speech=re.sub('!',' ',speech)
    speech=re.sub(':',' ',speech)
    speech=re.sub("'","",speech)
    speech=re.sub('"','',speech)
    speech=speech.lower()
    speech = word_tokenize(speech)
    return speech
def remove_stopwords(speech):
    speech_clean = [word for word in speech if word not in stopwords]
    return speech_clean
                         
df['speech_tokens']= df['speech'].apply(Text_cleansing)
df.head(5)
speaker speech speech_tokens
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t...
df['speech_clean']=df['speech_tokens'].apply(remove_stopwords)
df.head(5)
speaker speech speech_tokens speech_clean
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,... [good, evening, welcome, democratic, president...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,... [super, tuesday, week, away, biggest, primary,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th... [cbs, news, proud, bring, debate, along, co-sp...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ... [panering, tonight, twitter, ., home, paicipat...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t... [rules, next, hours, ., asked, question, minut...
def wordcloud(dataframe):
    Aw= df['speech_clean']
    wordCloud = WordCloud(width=500, height=300,background_color='white', max_font_size=110).generate(str(Aw))
    plt.imshow(wordCloud, interpolation="bilinear")
    plt.axis("off")
    plt.title("speech wordcloud")

wordcloud(df['speech_clean'])

png

Pour la suite du projet on reduira la liste des speakers aux candidats les plus notoires (top 7 speakers)###

df = df.loc[df.speaker.isin({'Joe Biden', 'Bernie Sanders', 'Elizabeth Warren', 'Michael Bloomberg', 'Pete Buttigieg', 'Amy Klobuchar',  'Tulsi Gabbard'})]
df.head()
df.shape
(2245, 4)

CountVectorizer et creation du dict des mots par candidat a utiliser sur les modeles ML qui seront en back-up###

Analyse Lexicale

cv = CountVectorizer(stop_words=stopwords)
df_cv = cv.fit_transform(df.speech)
df_words = pd.DataFrame(df_cv.toarray(), columns=cv.get_feature_names())
df_words.index = df.speaker
df_words = df_words.transpose()
df_words
speaker Bernie Sanders Michael Bloomberg Michael Bloomberg Bernie Sanders Pete Buttigieg Elizabeth Warren Elizabeth Warren Pete Buttigieg Joe Biden Bernie Sanders ... Amy Klobuchar Elizabeth Warren Amy Klobuchar Tulsi Gabbard Tulsi Gabbard Amy Klobuchar Amy Klobuchar Amy Klobuchar Elizabeth Warren Elizabeth Warren
00 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
000 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
001st 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
02 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
03 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
04 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
05 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
06 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
07 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10000 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100s 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 1 0 ... 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
149 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
xinjiang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yachts 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yale 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yanked 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
ye 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yeah 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 1 0 0
year 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yearly 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
years 2 0 0 0 0 0 0 1 0 0 ... 0 0 0 0 0 0 0 0 1 0
yellow 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemen 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemin 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yep 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yes 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yesterday 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yet 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yo 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
york 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yorker 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
young 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
younger 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youngest 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youth 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youtube 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zealand 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zero 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zeroed 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zip 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zone 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

6385 rows × 2245 columns

top_dict = {}
for c in df_words.columns:
    top = df_words[c].sort_values(ascending=False).head(30)
    top_dict[c]= list(zip(top.index, top.values))
for speaker, top_words in top_dict.items():
    print(speaker)
    print(', '.join([word for word, count in top_words[0:9]]))
    print('---')
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)


   
     in 
    
     ()
      1 top_dict = {}
      2 for c in df_words.columns:
----> 3     top = df_words[c].sort_values(ascending=False).head(30)
      4     top_dict[c]= list(zip(top.index, top.values))
      5 for speaker, top_words in top_dict.items():


TypeError: sort_values() missing 1 required positional argument: 'by'

    
   
df2=pd.DataFrame(top_dict)
df2.head(15)
from collections import Counter
words = []
for speaker in df_words.columns:
    top = [word for (word, count) in top_dict[speaker]]
    for t in top:
        words.append(t)
Counter(words).most_common(15)
---------------------------------------------------------------------------

KeyError                                  Traceback (most recent call last)


   
     in 
    
     ()
      2 words = []
      3 for speaker in df_words.columns:
----> 4     top = [word for (word, count) in top_dict[speaker]]
      5     for t in top:
      6         words.append(t)


KeyError: 'Bernie Sanders'

    
   

Implemantation du modèle###

print(df.columns)
print(df.shape)
df['speaker'] = df['speaker'].astype(str)
Index(['speaker', 'speech', 'speech_tokens', 'speech_clean'], dtype='object')
(2245, 4)

Embedding

import gensim
RANDOM_STATE = 50
EPOCHS = 5
BATCH_SIZE = 256
EMB_DIM = 100
SAVE_MODEL = True

X = df['speech_clean']
print(X.head())
X.shape
5     [well, you�re, right, economy, really, great, ...
6                                            [senator-]
8     [think, donald, trump, thinks, would, better, ...
9     [oh, mr., bloomberg, ., let, tell, mr., putin,...
11     [know, president, russia, wants, it�s, chaos, .]
Name: speech_clean, dtype: object





(2245,)
emb_model = gensim.models.Word2Vec(sentences = X, size = EMB_DIM, window = 5, workers = 4, min_count = 1)
print('La taille du vocabulaire appris est de ',len(list(emb_model.wv.vocab)))
La taille du vocabulaire appris est de  7139
from keras.preprocessing.text import Tokenizer
import tokenize
max_length = max([len(s) for s in X])

tokenizer_new = Tokenizer()
tokenizer_new.fit_on_texts(X)

X_seq = tokenizer_new.texts_to_sequences(X)
X_fin = sequence.pad_sequences(X_seq, maxlen = max_length)
print(X_fin.shape)
(2245, 140)
emb_vec = emb_model.wv
MAX_NB_WORDS = len(list(emb_vec.vocab))
tokenizer_word_index = tokenizer_new.word_index
vocab_size = len(tokenizer_new.word_index) + 1
embedded_matrix = np.zeros((vocab_size, EMB_DIM))


for word, i in tokenizer_word_index.items():
    if i>= MAX_NB_WORDS:
        continue
    try:
        embedding_vector = emb_vec[word]
        wv_matrix[i] = embedding_vector
    except:
        pass      
embedded_matrix.shape
print(embedded_matrix)
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]

Préparation des variables

from keras.utils import to_categorical
from sklearn.preprocessing import LabelEncoder
y = df.speaker
print(y.head(10))
y.shape
5     1
6     4
8     4
9     1
11    5
12    2
13    2
15    5
21    3
23    1
Name: speaker, dtype: int32





(2245,)
Counter(y)
Counter({'Bernie Sanders': 430,
         'Michael Bloomberg': 97,
         'Pete Buttigieg': 392,
         'Elizabeth Warren': 440,
         'Joe Biden': 456,
         'Amy Klobuchar': 353,
         'Tulsi Gabbard': 77})
le=LabelEncoder()
df['speaker'] = le.fit_transform(df['speaker'])
df.head()

y = df.speaker
y.head()
print(y.shape)
print(X_fin.shape)
(2245,)
(2245, 140)
X_train, X_test, y_train, y_test = train_test_split(X_fin , y, test_size = 0.2, random_state = 42)


print(X_train.shape)
print(y_train.shape)
(1796, 140)
(1796,)

Construction des NN

model_pre_trained = Sequential()

model_pre_trained.add(Embedding(vocab_size, EMB_DIM, weights = [embedded_matrix], 
                    input_length = max_length, trainable = False))
model_pre_trained.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model_pre_trained.add(Dense(1, activation='softmax'))

model_pre_trained.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

model_pre_trained.summary()
Model: "sequential_11"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_11 (Embedding)     (None, 140, 100)          714000    
_________________________________________________________________
lstm_13 (LSTM)               (None, 128)               117248    
_________________________________________________________________
dense_9 (Dense)              (None, 1)                 129       
=================================================================
Total params: 831,377
Trainable params: 117,377
Non-trainable params: 714,000
_________________________________________________________________

Fitting

history_pre_trained = model_pre_trained.fit(X_fin, y, batch_size = BATCH_SIZE, epochs =20, verbose =1, validation_split = 0.2)
Train on 1796 samples, validate on 449 samples
Epoch 1/20
1796/1796 [==============================] - 4s 2ms/step - loss: 0.5429 - accuracy: 0.1754 - val_loss: -0.4417 - val_accuracy: 0.2472
Epoch 2/20
1796/1796 [==============================] - 3s 2ms/step - loss: -6.7429 - accuracy: 0.1776 - val_loss: -14.1017 - val_accuracy: 0.2472
Epoch 3/20
1796/1796 [==============================] - 3s 2ms/step - loss: -15.8550 - accuracy: 0.1776 - val_loss: -19.5441 - val_accuracy: 0.2472
Epoch 4/20
1796/1796 [==============================] - 3s 2ms/step - loss: -20.7949 - accuracy: 0.1776 - val_loss: -23.4335 - val_accuracy: 0.2472
Epoch 5/20
1796/1796 [==============================] - 3s 2ms/step - loss: -24.1430 - accuracy: 0.1776 - val_loss: -25.9735 - val_accuracy: 0.2472
Epoch 6/20
1796/1796 [==============================] - 3s 2ms/step - loss: -26.4535 - accuracy: 0.1776 - val_loss: -28.0725 - val_accuracy: 0.2472
Epoch 7/20
1796/1796 [==============================] - 3s 2ms/step - loss: -28.4266 - accuracy: 0.1776 - val_loss: -29.9313 - val_accuracy: 0.2472
Epoch 8/20
1796/1796 [==============================] - 3s 2ms/step - loss: -30.1754 - accuracy: 0.1776 - val_loss: -31.6261 - val_accuracy: 0.2472
Epoch 9/20
1796/1796 [==============================] - 3s 2ms/step - loss: -31.8791 - accuracy: 0.1776 - val_loss: -33.3337 - val_accuracy: 0.2472
Epoch 10/20
1796/1796 [==============================] - 4s 2ms/step - loss: -33.5166 - accuracy: 0.1776 - val_loss: -34.9834 - val_accuracy: 0.2472
Epoch 11/20
1796/1796 [==============================] - 3s 2ms/step - loss: -35.1544 - accuracy: 0.1776 - val_loss: -36.5973 - val_accuracy: 0.2472
Epoch 12/20
1796/1796 [==============================] - 3s 2ms/step - loss: -36.7253 - accuracy: 0.1776 - val_loss: -38.2070 - val_accuracy: 0.2472
Epoch 13/20
1796/1796 [==============================] - 3s 2ms/step - loss: -38.3344 - accuracy: 0.1776 - val_loss: -39.8655 - val_accuracy: 0.2472
Epoch 14/20
1796/1796 [==============================] - 3s 2ms/step - loss: -39.9810 - accuracy: 0.1776 - val_loss: -41.5162 - val_accuracy: 0.2472
Epoch 15/20
1796/1796 [==============================] - 3s 1ms/step - loss: -41.6567 - accuracy: 0.1776 - val_loss: -43.2049 - val_accuracy: 0.2472
Epoch 16/20
1796/1796 [==============================] - 3s 1ms/step - loss: -43.2579 - accuracy: 0.1776 - val_loss: -44.8235 - val_accuracy: 0.2472
Epoch 17/20
1796/1796 [==============================] - 3s 1ms/step - loss: -44.9030 - accuracy: 0.1776 - val_loss: -46.4982 - val_accuracy: 0.2472
Epoch 18/20
1796/1796 [==============================] - 2s 1ms/step - loss: -46.5038 - accuracy: 0.1776 - val_loss: -48.0627 - val_accuracy: 0.2472
Epoch 19/20
1796/1796 [==============================] - 3s 1ms/step - loss: -48.0124 - accuracy: 0.1776 - val_loss: -49.5424 - val_accuracy: 0.2472
Epoch 20/20
1796/1796 [==============================] - 2s 1ms/step - loss: -49.5209 - accuracy: 0.1776 - val_loss: -51.1489 - val_accuracy: 0.2472

Evaluation du modèle

score = model_pre_trained.evaluate(X_test, y_test, verbose = 0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: -51.148848297866785
Test accuracy: 0.18930958211421967

ptoblèmes: npmbre important de stopwords à rajouter au dictionnaire, doutes sur la fonction dactivation, stemming/lemmatization qui semble peu efficace; axes d'amélioration: explorer les N grammes pouir contextualiser les mots et creer u_n dictionnaire de stopwords customisé pour les deabts ( association d'idées)/


Owner
Pamela Dekas
Adepte de text mining, deep learning and data visualization
Pamela Dekas
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022