Tree LSTM implementation in PyTorch

Overview

Tree-Structured Long Short-Term Memory Networks

This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks by Kai Sheng Tai, Richard Socher, and Christopher Manning. On the semantic similarity task using the SICK dataset, this implementation reaches:

  • Pearson's coefficient: 0.8492 and MSE: 0.2842 using hyperparameters --lr 0.010 --wd 0.0001 --optim adagrad --batchsize 25
  • Pearson's coefficient: 0.8674 and MSE: 0.2536 using hyperparameters --lr 0.025 --wd 0.0001 --optim adagrad --batchsize 25 --freeze_embed
  • Pearson's coefficient: 0.8676 and MSE: 0.2532 are the numbers reported in the original paper.
  • Known differences include the way the gradients are accumulated (normalized by batchsize or not).

Requirements

  • Python (tested on 3.6.5, should work on >=2.7)
  • Java >= 8 (for Stanford CoreNLP utilities)
  • Other dependencies are in requirements.txt Note: Currently works with PyTorch 0.4.0. Switch to the pytorch-v0.3.1 branch if you want to use PyTorch 0.3.1.

Usage

Before delving into how to run the code, here is a quick overview of the contents:

  • Use the script fetch_and_preprocess.sh to download the SICK dataset, Stanford Parser and Stanford POS Tagger, and Glove word vectors (Common Crawl 840) -- Warning: this is a 2GB download!), and additionally preprocees the data, i.e. generate dependency parses using Stanford Neural Network Dependency Parser.
  • main.pydoes the actual heavy lifting of training the model and testing it on the SICK dataset. For a list of all command-line arguments, have a look at config.py.
    • The first run caches GLOVE embeddings for words in the SICK vocabulary. In later runs, only the cache is read in during later runs.
    • Logs and model checkpoints are saved to the checkpoints/ directory with the name specified by the command line argument --expname.

Next, these are the different ways to run the code here to train a TreeLSTM model.

Local Python Environment

If you have a working Python3 environment, simply run the following sequence of steps:

- bash fetch_and_preprocess.sh
- pip install -r requirements.txt
- python main.py

Pure Docker Environment

If you want to use a Docker container, simply follow these steps:

- docker build -t treelstm .
- docker run -it treelstm bash
- bash fetch_and_preprocess.sh
- python main.py

Local Filesystem + Docker Environment

If you want to use a Docker container, but want to persist data and checkpoints in your local filesystem, simply follow these steps:

- bash fetch_and_preprocess.sh
- docker build -t treelstm .
- docker run -it --mount type=bind,source="$(pwd)",target="/root/treelstm.pytorch" treelstm bash
- python main.py

NOTE: Setting the environment variable OMP_NUM_THREADS=1 usually gives a speedup on the CPU. Use it like OMP_NUM_THREADS=1 python main.py. To run on a GPU, set the CUDA_VISIBLE_DEVICES instead. Usually, CUDA does not give much speedup here, since we are operating at a batchsize of 1.

Notes

  • (Apr 02, 2018) Added Dockerfile
  • (Apr 02, 2018) Now works on PyTorch 0.3.1 and Python 3.6, removed dependency on Python 2.7
  • (Nov 28, 2017) Added frozen embeddings, closed gap to paper.
  • (Nov 08, 2017) Refactored model to get 1.5x - 2x speedup.
  • (Oct 23, 2017) Now works with PyTorch 0.2.0.
  • (May 04, 2017) Added support for sparse tensors. Using the --sparse argument will enable sparse gradient updates for nn.Embedding, potentially reducing memory usage.
    • There are a couple of caveats, however, viz. weight decay will not work in conjunction with sparsity, and results from the original paper might not be reproduced using sparse embeddings.

Acknowledgements

Shout-out to Kai Sheng Tai for the original LuaTorch implementation, and to the Pytorch team for the fun library.

Contact

Riddhiman Dasgupta

This is my first PyTorch based implementation, and might contain bugs. Please let me know if you find any!

License

MIT

Owner
Riddhiman Dasgupta
Deep Learning, Science Fiction, Comic Books
Riddhiman Dasgupta
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023