Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Overview

Class-Balanced Loss Based on Effective Number of Samples

Tensorflow code for the paper:

Class-Balanced Loss Based on Effective Number of Samples
Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, Serge Belongie

Dependencies:

  • Python (3.6)
  • Tensorflow (1.14)

Datasets:

  • Long-Tailed CIFAR. We provide a download link that includes all the data used in our paper in .tfrecords format. The data was converted and generated by src/generate_cifar_tfrecords.py (original CIFAR) and src/generate_cifar_tfrecords_im.py (long-tailed CIFAR).

Effective Number of Samples:

For a visualization of the data and effective number of samples, please take a look at data.ipynb.

Key Implementation Details:

Training and Evaluation:

We provide 3 .sh scripts for training and evaluation.

  • On original CIFAR dataset:
./cifar_trainval.sh
  • On long-tailed CIFAR dataset (the hyperparameter IM_FACTOR is the inverse of "Imbalance Factor" in the paper):
./cifar_im_trainval.sh
  • On long-tailed CIFAR dataset using the proposed class-balanced loss (set non-zero BETA):
./cifar_im_trainval_cb.sh
  • Run Tensorboard for visualization:
tensorboard --logdir=./results --port=6006
  • The figure below are the results of running ./cifar_im_trainval.sh and ./cifar_im_trainval_cb.sh:

Training with TPU:

We train networks on iNaturalist and ImageNet datasets using Google's Cloud TPU. The code for this section is in tpu/. Our code is based on the official implementation of Training ResNet on Cloud TPU and forked from https://github.com/tensorflow/tpu.

Data Preparation:

  • Download datasets (except images) from this link and unzip it under tpu/. The unzipped directory tpu/raw_data/ contains the training and validation splits. For raw images, please download from the following links and put them into the corresponding folders in tpu/raw_data/:

  • Convert datasets into .tfrecords format and upload to Google Cloud Storage (gcs) using tpu/tools/datasets/dataset_to_gcs.py:

python dataset_to_gcs.py \
  --project=$PROJECT \
  --gcs_output_path=$GCS_DATA_DIR \
  --local_scratch_dir=$LOCAL_TFRECORD_DIR \
  --raw_data_dir=$LOCAL_RAWDATA_DIR

The following 3 .sh scripts in tpu/ can be used to train and evaluate models on iNaturalist and ImageNet using Cloud TPU. For more details on how to use Cloud TPU, please refer to Training ResNet on Cloud TPU.

Note that the image mean and standard deviation and input size need to be updated accordingly.

  • On ImageNet (ILSVRC 2012):
./run_ILSVRC2012.sh
  • On iNaturalist 2017:
./run_inat2017.sh
  • On iNaturalist 2018:
./run_inat2018.sh
  • The pre-trained models, including all logs viewable on tensorboard, can be downloaded from the following links:
Dataset Network Loss Input Size Download Link
ILSVRC 2012 ResNet-50 Class-Balanced Focal Loss 224 link
iNaturalist 2018 ResNet-50 Class-Balanced Focal Loss 224 link

Citation

If you find our work helpful in your research, please cite it as:

@inproceedings{cui2019classbalancedloss,
  title={Class-Balanced Loss Based on Effective Number of Samples},
  author={Cui, Yin and Jia, Menglin and Lin, Tsung-Yi and Song, Yang and Belongie, Serge},
  booktitle={CVPR},
  year={2019}
}
Owner
Yin Cui
Research Scientist at Google
Yin Cui
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022