PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

Overview

UMS for Multi-turn Response Selection

PWC

Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection.

@inproceedings{whang2021ums,
  title={Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection},
  author={Whang, Taesun and Lee, Dongyub and Oh, Dongsuk and Lee, Chanhee and Han, Kijong and Lee, Dong-hun and Lee, Saebyeok},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}

This code is reimplemented as a fork of huggingface/transformers and taesunwhang/BERT-ResSel.

alt text

Setup and Dependencies

This code is implemented using PyTorch v1.6.0, and provides out of the box support with CUDA 10.1 and CuDNN 7.6.5.

Anaconda / Miniconda is the recommended to set up this codebase.

Anaconda or Miniconda

Clone this repository and create an environment:

git clone https://www.github.com/taesunwhang/UMS-ResSel
conda create -n ums_ressel python=3.7

# activate the environment and install all dependencies
conda activate ums_ressel
cd UMS-ResSel

# https://pytorch.org
pip install torch==1.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt

Preparing Data and Checkpoints

Pre- and Post-trained Checkpoints

We provide following pre- and post-trained checkpoints.

sh scripts/download_pretrained_checkpoints.sh

Data pkls for Fine-tuning (Response Selection)

Original version for each dataset is availble in Ubuntu Corpus V1, Douban Corpus, and E-Commerce Corpus, respectively.

sh scripts/download_datasets.sh

Domain-specific Post-Training

Post-training Creation

Data for post-training BERT
#Ubuntu Corpus V1
sh scripts/create_bert_post_data_creation_ubuntu.sh
#Douban Corpus
sh scripts/create_bert_post_data_creation_douban.sh
#E-commerce Corpus
sh scripts/create_bert_post_data_creation_e-commerce.sh
Data for post-training ELECTRA
sh scripts/download_electra_post_training_pkl.sh

Post-training Examples

BERT+ (e.g., Ubuntu Corpus V1)
python3 main.py --model bert_post_training --task_name ubuntu --data_dir data/ubuntu_corpus_v1 --bert_pretrained bert-base-uncased --bert_checkpoint_path bert-base-uncased-pytorch_model.bin --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --training_type post_training
ELECTRA+ (e.g., Douban Corpus)
python3 main.py --model electra_post_training --task_name douban --data_dir data/electra_post_training --bert_pretrained electra-base-chinese --bert_checkpoint_path electra-base-chinese-pytorch_model.bin --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --training_type post_training

Training Response Selection Models

Model Arguments

BERT-Base
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 bert-base-uncased bert-base-uncased-pytorch_model.bin
douban
e-commerce
data/douban
data/e-commerce
bert-base-wwm-chinese bert-base-wwm-chinese_model.bin
BERT-Post
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 bert-post-uncased bert-post-uncased-pytorch_model.pth
douban data/douban bert-post-douban bert-post-douban-pytorch_model.pth
e-commerce data/e-commerce bert-post-ecommerce bert-post-ecommerce-pytorch_model.pth
ELECTRA-Base
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 electra-base electra-base-pytorch_model.bin
douban
e-commerce
data/douban
data/e-commerce
electra-base-chinese electra-base-chinese-pytorch_model.bin
ELECTRA-Post
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 electra-post electra-post-pytorch_model.pth
douban data/douban electra-post-douban electra-post-douban-pytorch_model.pth
e-commerce data/e-commerce electra-post-ecommerce electra-post-ecommerce-pytorch_model.pth

Fine-tuning Examples

BERT+ (e.g., Ubuntu Corpus V1)
python3 main.py --model bert_post --task_name ubuntu --data_dir data/ubuntu_corpus_v1 --bert_pretrained bert-post-uncased --bert_checkpoint_path bert-post-uncased-pytorch_model.pth --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir
UMS BERT+ (e.g., Douban Corpus)
python3 main.py --model bert_post --task_name douban --data_dir data/douban --bert_pretrained bert-post-douban --bert_checkpoint_path bert-post-douban-pytorch_model.pth --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --multi_task_type "ins,del,srch"
UMS ELECTRA (e.g., E-Commerce)
python3 main.py --model electra_base --task_name e-commerce --data_dir data/e-commerce --bert_pretrained electra-base-chinese --bert_checkpoint_path electra-base-chinese-pytorch_model.bin --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --multi_task_type "ins,del,srch"

Evaluation

To evaluate the model, set --evaluate to /path/to/checkpoints

UMS BERT+ (e.g., Ubuntu Corpus V1)
python3 main.py --model bert_post --task_name ubuntu --data_dir data/ubuntu_corpus_v1 --bert_pretrained bert-post-uncased --bert_checkpoint_path bert-post-uncased-pytorch_model.pth --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --evaluate /path/to/checkpoints --multi_task_type "ins,del,srch"

Performance

We provide model checkpoints of UMS-BERT+, which obtained new state-of-the-art, for each dataset.

Ubuntu [email protected] [email protected] [email protected]
UMS-BERT+ 0.875 0.942 0.988
Douban MAP MRR [email protected] [email protected] [email protected] [email protected]
UMS-BERT+ 0.625 0.664 0.499 0.318 0.482 0.858
E-Commerce [email protected] [email protected] [email protected]
UMS-BERT+ 0.762 0.905 0.986
Owner
Taesun Whang
Interested in NLP, Dialogue System, Multimodal Learning. Currently attending Master's course in Dept. of Computer Science and Engineering, Korea University.
Taesun Whang
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023