Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Overview

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

This repository contains the code to reproduce the results from the paper. Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code or paper useful, please consider citing

@inproceedings{NeuralPull,
    title = {Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces},
    author = {Baorui, Ma and Zhizhong, Han and Yu-shen, Liu and Matthias, Zwicker},
    booktitle = {International Conference on Machine Learning (ICML)},
    year = {2021}
}

Surface Reconstruction Demo

Single Image Reconstruction Demo

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called tensorflow1 using

conda env create -f NeuralPull.yaml
conda activate tensorflow1

Next, for evaluation of the models,compile the extension modules, which are provided by Occupancy Networks. You can do this via

python setup.py build_ext --inplace

To compile the dmc extension, you have to have a cuda enabled device set up. If you experience any errors, you can simply comment out the dmc_* dependencies in setup.py. You should then also comment out the dmc imports in im2mesh/config.py.

Dataset and pretrained model

  1. You can download our preprocessed data and pretrained model.Included in the link:

    --Our pre-train model on ABC and FAMOUS dataset.

    --Preprocessing data of ABC and FAMOUS(sample points and ground truth points).

    --Our reconstruction results.

  2. To make it easier for you to test the code, we have prepared exmaple data in the exmaple_data folder.

Building the dataset

Alternatively, you can also preprocess the dataset yourself. To this end, you have to follow the following steps:

  • Put your own pointcloud files in 'input_dir' folder, each pointcloud file in a separate .xyz.npy file.
  • Set an empty folder 'out_dir' to place the processed data, note, the folder need to be empty, because this folder will be deleted before the program runs.

You are now ready to build the dataset:

python sample_query_point --out_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --CUDA 0 --dataset other --input_dir ./data/abc_noisefree/04_pts/ 

Training

You can train a new network from scratch, run

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --class_name plane
  1. Train the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset other

Evaluation

For evaluation of the models and generation meshes using a trained model, use

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --class_name plane
  1. Evaluation the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset other

Script Parameters Explanation

Parameters Description
train train or test a network.
data_dir preprocessed data.
out_dir store network parameters when training or to load pretrained network parameters when testing.
class_idx the class to train or test when using shapenet dataset, other dataset, default.
class_name the class to train or test when using shapenet dataset, other dataset, default.
dataset shapenet,famous,ABC or other(your dataset)

Pytorch Implementation of Neural-Pull

Notably, the code in Pytorch implementation is not released by the official lab, it is achieved by @wzxshgz123's diligent work. His intention is only to provide references to researchers who are interested in Pytorch implementation of Neural-Pull. There is no doubt that his unconditional dedication should be appreciated.

fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
Syed Waqas Zamir 906 Dec 30, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022