Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Overview

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

This repository contains the code to reproduce the results from the paper. Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code or paper useful, please consider citing

@inproceedings{NeuralPull,
    title = {Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces},
    author = {Baorui, Ma and Zhizhong, Han and Yu-shen, Liu and Matthias, Zwicker},
    booktitle = {International Conference on Machine Learning (ICML)},
    year = {2021}
}

Surface Reconstruction Demo

Single Image Reconstruction Demo

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called tensorflow1 using

conda env create -f NeuralPull.yaml
conda activate tensorflow1

Next, for evaluation of the models,compile the extension modules, which are provided by Occupancy Networks. You can do this via

python setup.py build_ext --inplace

To compile the dmc extension, you have to have a cuda enabled device set up. If you experience any errors, you can simply comment out the dmc_* dependencies in setup.py. You should then also comment out the dmc imports in im2mesh/config.py.

Dataset and pretrained model

  1. You can download our preprocessed data and pretrained model.Included in the link:

    --Our pre-train model on ABC and FAMOUS dataset.

    --Preprocessing data of ABC and FAMOUS(sample points and ground truth points).

    --Our reconstruction results.

  2. To make it easier for you to test the code, we have prepared exmaple data in the exmaple_data folder.

Building the dataset

Alternatively, you can also preprocess the dataset yourself. To this end, you have to follow the following steps:

  • Put your own pointcloud files in 'input_dir' folder, each pointcloud file in a separate .xyz.npy file.
  • Set an empty folder 'out_dir' to place the processed data, note, the folder need to be empty, because this folder will be deleted before the program runs.

You are now ready to build the dataset:

python sample_query_point --out_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --CUDA 0 --dataset other --input_dir ./data/abc_noisefree/04_pts/ 

Training

You can train a new network from scratch, run

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --class_name plane
  1. Train the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset other

Evaluation

For evaluation of the models and generation meshes using a trained model, use

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --class_name plane
  1. Evaluation the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset other

Script Parameters Explanation

Parameters Description
train train or test a network.
data_dir preprocessed data.
out_dir store network parameters when training or to load pretrained network parameters when testing.
class_idx the class to train or test when using shapenet dataset, other dataset, default.
class_name the class to train or test when using shapenet dataset, other dataset, default.
dataset shapenet,famous,ABC or other(your dataset)

Pytorch Implementation of Neural-Pull

Notably, the code in Pytorch implementation is not released by the official lab, it is achieved by @wzxshgz123's diligent work. His intention is only to provide references to researchers who are interested in Pytorch implementation of Neural-Pull. There is no doubt that his unconditional dedication should be appreciated.

Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023