Type4Py: Deep Similarity Learning-Based Type Inference for Python

Overview

Type4Py: Deep Similarity Learning-Based Type Inference for Python

GH Workflow

This repository contains the implementation of Type4Py and instructions for re-producing the results of the paper.

Dataset

For Type4Py, we use the ManyTypes4Py dataset. You can download the latest version of the dataset here. Also, note that the dataset is already de-duplicated.

Code De-deduplication

If you want to use your own dataset, it is essential to de-duplicate the dataset by using a tool like CD4Py.

Installation Guide

Requirements

  • Linux-based OS
  • Python 3.5 or newer
  • An NVIDIA GPU with CUDA support

Quick Install

git clone https://github.com/saltudelft/type4py.git && cd type4py
pip install .

Usage Guide

Follow the below steps to train and evaluate the Type4Py model.

1. Extraction

NOTE: Skip this step if you're using the ManyTypes4Py dataset.

$ type4py extract --c $DATA_PATH --o $OUTPUT_DIR --d $DUP_FILES --w $CORES

Description:

  • $DATA_PATH: The path to the Python corpus or dataset.
  • $OUTPUT_DIR: The path to store processed projects.
  • $DUP_FILES: The path to the duplicate files, i.e., the *.jsonl.gz file produced by CD4Py. [Optional]
  • $CORES: Number of CPU cores to use for processing projects.

2. Preprocessing

$ type4py preprocess --o $OUTPUT_DIR --l $LIMIT

Description:

  • $OUTPUT_DIR: The path that was used in the first step to store processed projects. For the MT4Py dataset, use the directory in which the dataset is extracted.
  • $LIMIT: The number of projects to be processed. [Optional]

3. Vectorizing

$ type4py vectorize --o $OUTPUT_DIR

Description:

  • $OUTPUT_DIR: The path that was used in the previous step to store processed projects.

4. Learning

$ type4py learn --o $OUTPUT_DIR --c --p $PARAM_FILE

Description:

  • $OUTPUT_DIR: The path that was used in the previous step to store processed projects.

  • --c: Trains the complete model. Use type4py learn -h to see other configurations.

  • --p $PARAM_FILE: The path to user-provided hyper-parameters for the model. See this file as an example. [Optional]

5. Testing

$ type4py predict --o $OUTPUT_DIR --c

Description:

  • $OUTPUT_DIR: The path that was used in the first step to store processed projects.
  • --c: Predicts using the complete model. Use type4py predict -h to see other configurations.

6. Evaluating

$ type4py eval --o $OUTPUT_DIR --t c --tp 10

Description:

  • $OUTPUT_DIR: The path that was used in the first step to store processed projects.
  • --t: Evaluates the model considering different prediction tasks. E.g., --t c considers all predictions tasks, i.e., parameters, return, and variables. [Default: c]
  • --tp 10: Considers Top-10 predictions for evaluation. For this argument, You can choose a positive integer between 1 and 10. [Default: 10]

Use type4py eval -h to see other options.

Converting Type4Py to ONNX

To convert the pre-trained Type4Py model to the ONNX format, use the following command:

$ type4py to_onnx --o $OUTPUT_DIR

Description:

  • $OUTPUT_DIR: The path that was used in the usage section to store processed projects and the model.

VSCode Extension

vsm-version

Type4Py can be used in VSCode, which provides ML-based type auto-completion for Python files. The Type4Py's VSCode extension can be installed from the VS Marketplace here.

Type4Py Server

GH Workflow

The Type4Py server is deployed on our server, which exposes a public API and powers the VSCode extension. However, if you would like to deploy the Type4Py server on your own machine, you can adapt the server code here. Also, please feel free to reach out to us for deployment, using the pre-trained Type4Py model and how to train your own model by creating an issue.

Citing Type4Py

@article{mir2021type4py,
  title={Type4Py: Deep Similarity Learning-Based Type Inference for Python},
  author={Mir, Amir M and Latoskinas, Evaldas and Proksch, Sebastian and Gousios, Georgios},
  journal={arXiv preprint arXiv:2101.04470},
  year={2021}
}
Owner
Software Analytics Lab
Software Analytics Lab @ TU Delft
Software Analytics Lab
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022