This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection"

Overview

Anomaly Toolbox

Description

Anomaly Toolbox Powered by GANs.

This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection" (https://arxiv.org/pdf/1906.11632.pdf).

The toolbox is meant to be used by the user to explore the performance of different GAN based architectures (in our work aka "experiments"). It also already provides some datasets to perform experiments on:

We provided the MNIST dataset because the original works extensively use it. On the other hand, we have also added the previously listed datasets both because used by a particular architecture and because they contribute a good benchmark for the models we have implemented.

All the architectures were tested on commonly used datasets such as MNIST, FashionMNIST, CIFAR-10, and KDD99. Some of them were even tested on more specific datasets, such as an X-Ray dataset that, however, we could not provide because of the impossibility of getting the data (privacy reasons).

The user can create their own dataset and use it to test the models.

Quick Start

  • First thing first, install the toolbox
pip install anomaly-toolbox

Then you can choose what experiment to run. For example:

  • Run the GANomaly experiment (i.e., the GANomaly architecture) with hyperparameters tuning enabled, the pre-defined hyperparameters file hparams.json and the MNIST dataset:
anomaly-box.py --experiment GANomalyExperiment --hps-path path/to/config/hparams.json --dataset 
MNIST 
  • Otherwise, you can run all the experiments using the pre-defined hyperparameters file hparams. json and the MNIST dataset:
anomaly-box.py --run-all --hps-path path/to/config/hparams.json --dataset MNIST 

For any other information, feel free to check the help:

anomaly-box.py --help

Contribution

This work is completely open source, and we would appreciate any contribution to the code. Any merge request to enhance, correct or expand the work is welcome.

Notes

The structures of the models inside the toolbox come from their respective papers. We have tried to respect them as much as possible. However, sometimes, due to implementation issues, we had to make some minor-ish changes. For this reason, you could find out that, in some cases, some features such as the number of layers, the size of kernels, or other such things may differ from the originals.

However, you don't have to worry. The heart and purpose of the architectures have remained intact.

Installation

pip install anomaly-toolbox

Usage

Options:
  --experiment [AnoGANExperiment|DeScarGANExperiment|EGBADExperiment|GANomalyExperiment]
                                  Experiment to run.
  --hps-path PATH                 When running an experiment, the path of the
                                  JSON file where all the hyperparameters are
                                  located.  [required]
  --tuning BOOLEAN                If you want to use hyperparameters tuning,
                                  use 'True' here. Default is False.
  --dataset TEXT                  The dataset to use. Can be a ready to use
                                  dataset, or a .py file that implements the
                                  AnomalyDetectionDataset interface
                                  [required]
  --run-all BOOLEAN               Run all the available experiments
  --help                          Show this message and exit.

Datasets and Custom Datasets

The provided datasets are:

and are automatically downloaded when the user makes a specific choice: ["MNIST", "CorruptedMNIST", "SurfaceCracks","MVTecAD"].

The user can also add its own specific dataset. To do this, the new dataset should inherit from the AnomalyDetectionDataset abstract class implementing its own configure method. For a more detailed guide, the user can refer to the README.md file inside the src/anomaly_toolbox/datasets folder. Moreover, in the examples folder, the user can find a dummy.py module with the basic skeleton code to implement a dataset.

References

Owner
Zuru Tech
Open source @ ZURU Tech
Zuru Tech
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022