Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Overview

Trajectory Transformer

Code release for Reinforcement Learning as One Big Sequence Modeling Problem.

Installation

All python dependencies are in environment.yml. Install with:

conda env create -f environment.yml
conda activate trajectory
pip install -e .

For reproducibility, we have also included system requirements in a Dockerfile (see installation instructions), but the conda installation should work on most standard Linux machines.

Usage

Train a transformer with: python scripts/train.py --dataset halfcheetah-medium-v2

To reproduce the offline RL results: python scripts/plan.py --dataset halfcheetah-medium-v2

By default, these commands will use the hyperparameters in config/offline.py. You can override them with runtime flags:

python scripts/plan.py --dataset halfcheetah-medium-v2 \
	--horizon 5 --beam_width 32

A few hyperparameters are different from those listed in the paper because of changes to the discretization strategy. These hyperparameters will be updated in the next arxiv version to match what is currently in the codebase.

Pretrained models

We have provided pretrained models for 16 datasets: {halfcheetah, hopper, walker2d, ant}-{expert-v2, medium-expert-v2, medium-v2, medium-replay-v2}. Download them with ./pretrained.sh

The models will be saved in logs/$DATASET/gpt/pretrained. To plan with these models, refer to them using the gpt_loadpath flag:

python scripts/plan.py --dataset halfcheetah-medium-v2 \
	--gpt_loadpath gpt/pretrained

pretrained.sh will also download 15 plans from each model, saved to logs/$DATASET/plans/pretrained. Read them with python plotting/read_results.py.

To create the table of offline RL results from the paper, run python plotting/table.py. This will print a table that can be copied into a Latex document. (Expand to view table source.)
\begin{table*}[h]
\centering
\small
\begin{tabular}{llrrrrrr}
\toprule
\multicolumn{1}{c}{\bf Dataset} & \multicolumn{1}{c}{\bf Environment} & \multicolumn{1}{c}{\bf BC} & \multicolumn{1}{c}{\bf MBOP} & \multicolumn{1}{c}{\bf BRAC} & \multicolumn{1}{c}{\bf CQL} & \multicolumn{1}{c}{\bf DT} & \multicolumn{1}{c}{\bf TT (Ours)} \\ 
\midrule
Medium-Expert & HalfCheetah & $59.9$ & $105.9$ & $41.9$ & $62.4$ & $86.8$ & $95.0$ \scriptsize{\raisebox{1pt}{$\pm 0.2$}} \\ 
Medium-Expert & Hopper & $79.6$ & $55.1$ & $0.9$ & $111.0$ & $107.6$ & $110.0$ \scriptsize{\raisebox{1pt}{$\pm 2.7$}} \\ 
Medium-Expert & Walker2d & $36.6$ & $70.2$ & $81.6$ & $98.7$ & $108.1$ & $101.9$ \scriptsize{\raisebox{1pt}{$\pm 6.8$}} \\ 
Medium-Expert & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $116.1$ \scriptsize{\raisebox{1pt}{$\pm 9.0$}} \\ 
\midrule
Medium & HalfCheetah & $43.1$ & $44.6$ & $46.3$ & $44.4$ & $42.6$ & $46.9$ \scriptsize{\raisebox{1pt}{$\pm 0.4$}} \\ 
Medium & Hopper & $63.9$ & $48.8$ & $31.3$ & $58.0$ & $67.6$ & $61.1$ \scriptsize{\raisebox{1pt}{$\pm 3.6$}} \\ 
Medium & Walker2d & $77.3$ & $41.0$ & $81.1$ & $79.2$ & $74.0$ & $79.0$ \scriptsize{\raisebox{1pt}{$\pm 2.8$}} \\ 
Medium & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $83.1$ \scriptsize{\raisebox{1pt}{$\pm 7.3$}} \\ 
\midrule
Medium-Replay & HalfCheetah & $4.3$ & $42.3$ & $47.7$ & $46.2$ & $36.6$ & $41.9$ \scriptsize{\raisebox{1pt}{$\pm 2.5$}} \\ 
Medium-Replay & Hopper & $27.6$ & $12.4$ & $0.6$ & $48.6$ & $82.7$ & $91.5$ \scriptsize{\raisebox{1pt}{$\pm 3.6$}} \\ 
Medium-Replay & Walker2d & $36.9$ & $9.7$ & $0.9$ & $26.7$ & $66.6$ & $82.6$ \scriptsize{\raisebox{1pt}{$\pm 6.9$}} \\ 
Medium-Replay & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $77.0$ \scriptsize{\raisebox{1pt}{$\pm 6.8$}} \\ 
\midrule
\multicolumn{2}{c}{\bf Average (without Ant)} & 47.7 & 47.8 & 36.9 & 63.9 & 74.7 & 78.9 \hspace{.6cm} \\ 
\multicolumn{2}{c}{\bf Average (all settings)} & $-$ & $-$ & $-$ & $-$ & $-$ & 82.2 \hspace{.6cm} \\ 
\bottomrule
\end{tabular}
\label{table:d4rl}
\end{table*}

To create the average performance plot, run python plotting/plot.py. (Expand to view plot.)

Docker

Copy your MuJoCo key to the Docker build context and build the container:

cp ~/.mujoco/mjkey.txt azure/files/
docker build -f azure/Dockerfile . -t trajectory

Test the container:

docker run -it --rm --gpus all \
	--mount type=bind,source=$PWD,target=/home/code \
	--mount type=bind,source=$HOME/.d4rl,target=/root/.d4rl \
	trajectory \
	bash -c \
	"export PYTHONPATH=$PYTHONPATH:/home/code && \
	python /home/code/scripts/train.py --dataset hopper-medium-expert-v2 --exp_name docker/"

Running on Azure

Setup

  1. Launching jobs on Azure requires one more python dependency:
pip install git+https://github.com/JannerM/[email protected]
  1. Tag the image built in the previous section and push it to Docker Hub:
export DOCKER_USERNAME=$(docker info | sed '/Username:/!d;s/.* //')
docker tag trajectory ${DOCKER_USERNAME}/trajectory:latest
docker image push ${DOCKER_USERNAME}/trajectory
  1. Update azure/config.py, either by modifying the file directly or setting the relevant environment variables. To set the AZURE_STORAGE_CONNECTION variable, navigate to the Access keys section of your storage account. Click Show keys and copy the Connection string.

  2. Download azcopy: ./azure/download.sh

Usage

Launch training jobs with python azure/launch_train.py and planning jobs with python azure/launch_plan.py.

These scripts do not take runtime arguments. Instead, they run the corresponding scripts (scripts/train.py and scripts/plan.py, respectively) using the Cartesian product of the parameters in params_to_sweep.

Viewing results

To rsync the results from the Azure storage container, run ./azure/sync.sh.

To mount the storage container:

  1. Create a blobfuse config with ./azure/make_fuse_config.sh
  2. Run ./azure/mount.sh to mount the storage container to ~/azure_mount

To unmount the container, run sudo umount -f ~/azure_mount; rm -r ~/azure_mount

Reference

@article{janner2021sequence,
  title={Reinforcement Learning as One Big Sequence Modeling Problem},
  author={Michael Janner and Qiyang Li and Sergey Levine},
  journal={arXiv preprint arXiv:2106.02039},
  year={2021},
}

Acknowledgements

The GPT implementation is from Andrej Karpathy's minGPT repo.

The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022