Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Overview

Fine-Grained R2R

Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation.

Code of the navigator will be released soon.

This dataset enriches the benchmark Room-to-Room (R2R) dataset by dividing the instructions into sub-instructions and pairing each of those with their corresponding viewpoints in the path.

  • The copyright resides with the authors of the paper Sub-Instruction Aware Vision-and-Language Navigation.
  • This dataset is build upon the Room-to-Room (R2R) dataset, we refer the readers to its repository for more details.

Data

The Fine-Grained R2R data, which enriches the R2R dataset with sub-instructions and their corresponding paths. The overall instruction and trajectory of each sample remains the same.

  • For paths in the train, the validation seen and the validation unseen splits, we add two new entries:

    • new_instructions: A list of sub-instructions produced by the Chunking Function from the complete instructions. You can use import ast and ast.literal_eval() to read it a list.
    • chunk_view: A list of sub-paths corresponding to the sub-instructions, where each number in the list is an index of a viewpoint in the ground-truth path. The index starts at 1.
  • Some sub-instructions which refer to camera rotation or a STOP action could match to a single viewpoint.

  • For the test unseen split, we only provide the sub-instructions but not the sub-paths.

Source

The code of the proposed Chunking Function for generating sub-instructions.

  • Install the StanfordNLP package (v0.1.2 in our experiment) and download the English models for the neural pipeline.

  • Run make_subinstr.py to generate data with sub-instructions from the original R2R data.

  • The generated files had been sent to the Amazon Mechanical Turk (AMT) for annotating the sub-paths.

Reference

If you use or dicsuss the Fine-Grained R2R dataset in your work, please cite our paper:

@article{hong2020sub,
  title={Sub-Instruction Aware Vision-and-Language Navigation},
  author={Hong, Yicong and Rodriguez-Opazo, Cristian and Wu, Qi and Gould, Stephen},
  journal={arXiv preprint arXiv:2004.02707},
  year={2020}
}

Contact

If you have any question regarding the dataset or publication, please create an issue in this repository or email to [email protected].

Owner
YicongHong
I don't even know where is the end of our universe, how am I suppose to know that?
YicongHong
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022