This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Overview

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

This is the repository for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement". The repository is structured as the following:

  • PyPruning: This repository contains the implementations for all pruning algorithms and can be installed as a regular python package and used in other projects. For more information have a look at the Readme file in PyPruning/Readme.md and its documentation in PyPruning/docs.
  • experiment_runner: This is a simple package / script which can be used to run multiple experiments in parallel on the same machine or distributed across many different machines. It can also be installed as a regular python package and used for other projects. For more information have a look at the Readme file in experiment_runner/Readme.md.
  • {adult, bank, connect, ..., wine-quality}: Each folder contains an script init.sh which downloads the necessary files and performs pre-processing if necessary (e.g. extract archives etc.).
  • init_all.sh: Iterates over all datasets and calls the respective init.sh files. Depending on your internet connection this may take some time
  • environment.yml: Anaconda environment file which contains all dependencies. For more details see below
  • LeafRefinement.py: This is the implementation of the LeafRefinement method. We initially implemented a more complex method which uses Proximal Gradient Descent to simultaneously learn the weights and refine leaf nodes. During our experiments we discovered that leaf-refinement in iteself was enough and much simpler. We kept our old code, but implemented the LeafRefinement.py class for easier usage.
  • run.py: The script which executes the experiments. For more details see the examples below.
  • plot_results.py: The script is used explore and display results. It also creates the plots for the paper.

Getting everything ready

This git repository contains two submodules PyPruning and experiment_runner which need to be cloned first.

git clone --recurse-submodules [email protected]:sbuschjaeger/leaf-refinement-experiments.git

After the code has been obtained you need to install all dependencies. If you use Anaconda you can simply call

conda env create -f environment.yml

to prepare and activate the environment LR. After that you can install the python packages PyPruning and experiment_runner via pip:

pip install -e file:PyPruning
pip install -e file:experiment_runner

and finally activate the environment with

conda activate LR

Last you will need to get some data. If you are interested in a specific dataset you can use the accompanying init.sh script via

cd `${Dataset}`
./init.sh

or if you want to download all datasets use

./init_all.sh

Depending on your internet connection this may take some time.

Running experiments

If everything worked as expected you should now be able to run the run.py script to prune some ensembles. This script has a decent amount of parameters. See further below for an minimal working example.

  • n_jobs: Number of jobs / threads used for multiprocessing
  • base: Base learner used for experiments. Can be {RandomForestClassifier, ExtraTreesClassifier, BaggingClassifier, HeterogenousForest}. Can be a list of arguments for multiple experiments.
  • nl: Maximum number of leaf nodes (corresponds to scikit-learns max_leaf_nodes parameter)
  • dataset: Dataset used for experiment. Can be a list of arguments for multiple experiments.
  • n_estimators: Number of estimators trained for the base learner.
  • n_prune: Size of the pruned ensemble. Can be a list of arguments for multiple experiments.
  • xval: Number of cross validation runs (default is 5)
  • use_prune: If set then the script uses a train / prune / test split. If not set then the training data is also used for pruning.
  • timeout: Maximum number of seconds per run. If the runtime exceeds the provided value, stop execution (default is 5400 seconds)

Note that all base ensembles for all cross validation splits of a dataset are trained before any of the pruning algorithms are used. If you want to evaluate many datasets / hyperparameter configuration in one run this requires a lot of memory.

To train and prune forests on the magic dataset you can for example do

./run.py --dataset adult -n_estimators 256 --n_prune 2 4 8 16 32 64 128 256 --nl 64 128 256 512 1024 --n_jobs 128 --xval 5 --base RandomForestClassifier

The results are stored in ${Dataset}/results/${base}/${use_prune}/${date}/results.jsonl where ${Dataset} is the dataset (e.g. magic) and ${date} is the current time and date.

In order to re-produce the experiments form the paper you can call:

./run.py --dataset adult anura bank chess connect eeg elec postures japanese-vowels magic mozilla mnist nomao avila ida2016 satimage --n_estimators 256 --n_prune 2 4 8 16 32 64 128 256 --nl 64 128 256 512 1024 --n_jobs 128 --xval 5 --base RandomForestClassifier

Important: This call uses 128 threads and requires a decent (something in the range of 64GB) amount of memory to work.

Exploring the results

After you run the experiments you can view the results with the plot_results.py script. We recommend to use an interactive Python environment for that such as Jupyter or VSCode with the ability to execute cells, but you should also be able to run this script as-is. This script is fairly well-commented, so please have a look at it for more detailed comments.

OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022