In Search of Probeable Generalization Measures

Related tags

Deep LearningGenProb
Overview

In Search of Probeable Generalization Measures

Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Conference on Machine Learning and Applications (ICMLA) 2021 for Oral Presentation!

In Search of Probeable Generalization Measures,
Jonathan Jaegerman, Khalil Damouni, Mahdi S. Hosseini, Konstantinos N. Plataniotis, In Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA)

Table of Contents

Overview

In Search of Probeable Generalization Measures evaluates and compares generalization measures to establish firm ground for further investigation and incite the production of novel deep learning algorithms that improve generalization. This repository contains the scripts used to parse through GenProb, a dataset of trained deep CNNs, processing model layer weights and computing generalization measures. You can use this code to better understand how GenProb can be used to test generalization measures and HPO algorithms. Measure calculation scripts are also provided.

image

Generalization Measures

Stable quality (SQ) refers to the stability of encoding in a deep layer that is calculated with the relative ratio of stable rank and condition number of a layer.

Effective rank (E) refers to the dimension of the output space of the transformation operated by a deep layer that is calculated with the Shannon entropy of the normalized singular values of a layer as defined in.

Frobenius norm (F) refers to the magnitude of a deep layer that is calculated with the sum of the squared values of a weight tensor.

Spectral norm (S) refers to the maximum magnitude of mapping by a transformation operated by a layer that is calculated as the maximum singular value of a weight tensor.

Further elaboration of these metrics and their equations can be found in the paper. The layer-wise processing of these metrics can be found under /source/process.py along with a list of other metrics discluded from the paper. Convolution weight tensors are first unfolded along channel axes into a 2d matrix before metrics are calculated via processing of singular values or other norm calculations. The low rank factorization preprocessing of weight matrices is also included under the EVBMF function. Metrics are aggregated accross layers

GenProb Dataset

Generalization Dataset for Probeable Measures is a family of trained models used to test the effectiveness of the measures for tracking generalization performance at earlier stages of training. We train families of models with varied hyperparameter and channel size configurations as elaborated in the paper.

The full dataset of pytorch model files can be accessed at: (LINK) --currently being uploaded

Results

Generalization measures plotted against generalization performance metrics at progressive epochs of training for models optimized with Adam from the GenProb dataset.

Evolution of generalization measure correlation with generalization performance metrics over epochs of training for models optimized with Adam from the GenProb dataset.

Requirements

We use Python 3.7.

Software

Please find required libraries in the requirements.txt file.

Usage

Pretrained Models

GenProb pretrianed model weights should be placed in the GenProb/models/GenProb. Other pretrained model weight may be placed anywhere, and the path must be specified in source/parsing_agent.py.

Within source/main.py, the library of models must be specified, alongside the hyperparameter configuration wanted. For GenProb, that includes the number of epochs trained for, and the dataset. Evaluations may be done in batches, using the boolean new. If set to 0, evaluation will begin at the index specified by start. The name of the file the results should be appened to must be specified as well. Otherwise, it will begin at the first file in the folder, and appened results to a new file.

This outputs a csv file, with the metrics evaluation on a layer-wise basis. These may be aggregated as wanted, or by using methods specified in the paper through use of the file source/qualities.py.

Common Issues (running list)

Owner
Mahdi S. Hosseini
Assistant Professor in ECE Department at University of New Brunswick. My research interests cover broad topics in Machine Learning and Computer Vision problems
Mahdi S. Hosseini
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021