PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Related tags

Deep LearningHDN
Overview

Homography Decomposition Networks for Planar Object Tracking

This project is the offical PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking. (AAAI 2022, Accepted)

Project Page | Paper

@misc{zhan2021homography,
      title={Homography Decomposition Networks for Planar Object Tracking}, 
      author={Xinrui Zhan and Yueran Liu and Jianke Zhu and Yang Li},
      year={2021},
      eprint={2112.07909},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation

Please find installation instructions in INSTALL.md.

Quick Start: Using HDN

Add HDN to your PYTHONPATH

vim ~/.bashrc
# add home of project to PYTHONPATH
export PYTHONPATH=/path/to/HDN:/path/to/HDN/homo_estimator/Deep_homography/Oneline_DLTv1:$PYTHONPATH

Download models

Google Drive or Baidu Netdisk (key: 8uhq)

Base Setting

The global parameters setting file is hdn/core/config.py You first need to set the base path:

__C.BASE.PROJ_PATH = /xxx/xxx/project_root/ #/home/Kay/SOT/server_86/HDN/   (path_to_hdn)
__C.BASE.BASE_PATH = /xxx/xxx/ #/home/Kay/SOT/                  (base_path_to_workspace)
__C.BASE.DATA_PATH = /xxx/xxx/data/POT  #/home/Kay/data/POT     (path to POT datasets)
__C.BASE.DATA_ROOT = /xxx/xxx   #/home/Kay/Data/Dataset/        (path to other datasets)

Demo

Planar Object Tracking and its applications we provide 4 modes:

  • tracking: tracking planar object with not less than 4 points in the object.
  • img_replace: replacing planar object with image .
  • video_replace: replacing planar object with video.
  • mosiac: adding mosiac to planar object.
python tools/demo.py 
--snapshot model/hdn-simi-sup-hm-unsup.pth 
--config experiments/tracker_homo_config/proj_e2e_GOT_unconstrained_v2.yaml 
--video demo/door.mp4 
--mode img_replace 
--img_insert demo/coke2.jpg #required in mode 'img_replace'  
--video_insert demo/t5_videos/replace-video/   #required in mode 'video_replace'
--save # whether save the results.

e.g.

python tools/demo.py  --snapshot model/hdn-simi-sup-hm-unsup.pth  --config experiments/tracker_homo_config/proj_e2e_GOT_unconstrained_v2.yaml --video demo/door.mp4 --mode img_replace --img_insert demo/coke2.jpg --save

we provide some real-world videos here

Download testing datasets

POT

For POT dataset, download the videos from POT280 and annotations from here

1. unzip POT_v.zip and POT_annotation.zip and put them in your cfg.BASE.DATA_PATH #unzip the zip files
  cd POT_v
  unzip "*.zip"
  cd ..

2. mkdir POT
   mkdir path_to_hdn/testing_dataset
   python path_to_hdn/toolkit/benchmarks/POT/pot_video_to_pic.py #video to images  
   ln -s path_to_data/POT  path_to_hdn/testing_dataset/POT #link to testing_datasets


4. python path_to_hdn/toolkit/benchmarks/POT/generate_json_for_POT.py --dataset POT210 #generate json annotation for POT
   python path_to_hdn/toolkit/benchmarks/POT/generate_json_for_POT.py --dataset POT280 

UCSB & POIC

Download from here put them in your cfg.BASE.DATA_PATH

ln -s path_to_data/UCSB  path_to_hdn/testing_dataset/UCSB #link to testing_datasets

generate json:

  python path_to_hdn/toolkit/benchmarks/POIC/generate_json_for_poic.py #generate json annotation for POT
  python path_to_hdn/toolkit/benchmarks/UCSB/generate_json_for_ucsb.py #generate json annotation for POT

Other datsets:

Download datasets and put them into testing_dataset directory. Jsons of commonly used datasets can be downloaded from here. If you want to test tracker on new dataset, please refer to pysot-toolkit to setting testing_dataset.

Test tracker

  • test POT
cd experiments/tracker_homo_config
python -u ../../tools/test.py \
	--snapshot ../../model/hdn-simi-sup-hm-unsup.pth \ # model path 
	--dataset POT210 \ # dataset name
	--config proj_e2e_GOT_unconstrained_v2.yaml # config file
	--vis   #display video

The testing results will in the current directory(./results/dataset/model_name/)

Eval tracker

For POT evaluation

1.use tools/change_pot_results_name.py to convert result_name(you need to set the path in the file).

2.use tools/convert2Homography.py to generate the homo file(you need to set the corresponding path in the file).

3.use POT toolkit to test the results. My version toolkit can be found here or official for other trackers:

For others:

For POIC, UCSB or POT evaluation on centroid precision, success rate, and robustness etc. assuming still in experiments/tracker_homo_config

python ../../tools/eval.py 	 \
	--tracker_path ./results \ # result path
	--dataset POIC        \ # dataset name
	--num 1 		 \ # number thread to eval
	--tracker_prefix 'model'   # tracker_name

The raw results can be downloaded at Google Drive or Baidu Netdisk (key:d98h)

Training 🔧

We use the COCO14 and GOT10K as our traning datasets. See TRAIN.md for detailed instruction.

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grants (61831015 and 62102152) and sponsored by CAAI-Huawei MindSpore Open Fund.

Our codes is based on SiamBAN and DeepHomography.

License

This project is released under the Apache 2.0 license.

Owner
CaptainHook
CaptainHook
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022