Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

Overview

BERT Got a Date: Introducing Transformers to Temporal Tagging

Satya Almasian*, Dennis Aumiller*, and Michael Gertz
Heidelberg University
Contact us via: <lastname>@informatik.uni-heidelberg.de

Code and data for the paper BERT Got a Date: Introducing Transformers to Temporal Tagging. Temporal tagging is the task of identification of temporal mentions in text; these expressions can be further divided into different type categories, which is what we refer to as expression (type) classification. This repository describes two different types of transformer-based temporal taggers, which are both additionally capable of expression classification. We follow the TIMEX3 schema definitions in their styling and expression classes (notably, the latter are one of TIME, DATE, SET, DURATION). The available data sources for temporal tagging are in the TimeML format, which is essentially a form of XML with tags encapsulating temporal expressions.
An example can be seen below:

Due to lockdown restrictions, 2020 might go down as the worst economic year in over <TIMEX3 tid="t2" type="DURATION" value="P1DE">a decade</TIMEX3>.

For more data instances, look at the content of data.zip. Refer to the README file in the respective unzipped folder for more information.
This repository contains code for data preparation and training of a seq2seq model (encoder-decoder architectured initialized from encoder-only architectures, specifically BERT or RoBERTa), as well as three token classification encoders (BERT-based).
The output of the models discussed in the paper is in the results folder. Refer to the README file in the folder for more information.

Data Preparation

The scripts to generate training data is in the subfolder data_preparation. For more usage information, refer to the README file in the subfolder. The data used for training and evaluation are provided in zipped form in data.zip.

Evaluation

For evaluation, we use a slightly modified version of the TempEval-3 evaluation toolkit (original source here). We refactored the code to be compatible with Python3, and incorporated additional evaluation metrics, such as a confusion matrix for type classification. We cross-referenced results to ensure full backward-compatibility and all runs result in the exact same results for both versions. Our adjusted code, as well as scripts to convert the output of transformer-based tagging models are in the evaluation subfolder. For more usage information, refer to the README file in the respective subfolder.

Temporal models

We train and evaluate two types of setups for joint temporal tagging and classification:

  • Token Classification: We define three variants of simple token classifiers; all of them are based on Huggingface's BertForTokenClassification. We adapt their "token classification for named entity recognition script" to train these models. All the models are trained using bert-base-uncased as their pre-trained checkpoint.
  • Text-to-Text Generation (Seq2Seq): These models are encoder-decoder architectures using BERT or RoBERTa for initial weights. We use Huggingface's EncoderDecoder class for initialization of weights, starting from bert-base-uncased and roberta-base, respectively.

Seq2seq

To train the seq2seq models, use run_seq2seq_bert_roberta.py. Example usage is as follows:

python3 run_seq2seq_bert_roberta.py --model_name roberta-base --pre_train True \
--model_dir ./test --train_data ./data/seq2seq/train/tempeval_train.json \ 
--eval_data ./data/seq2seq/test/tempeval_test.json --num_gpu 2 --num_train_epochs 1 \
warmup_steps 100 --seed 0 --eval_steps 200

Which trains a roberta2roberta model defined by model_name for num_train_epochs epochs on the gpu with ID num_gpu. The random seed is set by seed and the number of warmup steps by warmup_steps. Train data should be specified in train_data and model_dir defines where the model is saved. set eval_data if you want intermediate evaluation defined by eval_steps. If the pre_train flag is set to true it will load the checkpoints from the hugginface hub and fine-tune on the dataset given. If the pre_train is false, we are in the fine-tuning mode and you can provide the path to the pre-trained model with pretrain_path. We used the pre_train mode to train on weakly labeled data provided by the rule-based system of HeidelTime and set the pre_train to false for fine-tunning on the benchmark datasets. If you wish to simply fine-tune the benchmark datasets using the huggingface checkpoints you can set the pre_train to ture, as displayed in the example above. For additional arguments such as length penalty, the number of beams, early stopping, and other model specifications, please refer to the script.

Token Classifiers

As mentioned above all token classifiers are trained using an adaptation of the NER script from hugginface. To train these models use
run_token_classifier.py like the following example:

python3 run_token_classifier.py --data_dir /data/temporal/BIO/wikiwars \ 
--labels ./data/temporal/BIO/train_staging/labels.txt \ 
--model_name_or_path bert-base-uncased \ 
--output_dir ./fine_tune_wikiwars/bert_tagging_with_date_no_pretrain_8epochs/bert_tagging_with_date_layer_seed_19 --max_seq_length  512  \
--num_train_epochs 8 --per_device_train_batch_size 34 --save_steps 3000 --logging_steps 300 --eval_steps 3000 \ 
--do_train --do_eval --overwrite_output_dir --seed 19 --model_date_extra_layer    

We used bert-base-uncased as the base of all our token classification models for pre-training as defined by model_name_or_path. For fine-tuning on the datasets model_name_or_path should point to the path of the pre-trained model. labels file is created during data preparation for more information refer to the subfolder. data_dir points to a folder that contains train.txt, test.txt and dev.txt and output_dir points to the saving location. You can define the number of epochs by num_train_epochs, set the seed with seed and batch size on each GPU with per_device_train_batch_size. For more information on the parameters refer to the Hugginface script. In our paper, we introduce 3 variants of token classification, which are defined by flags in the script. If no flag is set the model trains the vanilla BERT for token classification. The flag model_date_extra_layer trains the model with an extra date layer and model_crf adds the extra crf layer. To train the extra date embedding you need to download the vocabulary file and specify its path in date_vocab argument. The description and model definition of the BERT variants are in folder temporal_models. Please refer to the README file for further information. For training different model types on the same data, make sure to remove the cached dataset, since the feature generation is different for each model type.

Load directly from the Huggingface Model Hub

We uploaded our best-performing version of each architecture to the Huggingface Model Hub. The weights for the other four seeding runs are available upon request. We upload the variants that were fine-tuned on the concatenation of all three evaluation sets for better generalization to various domains. Token classification models are variants without pre-training. Both seq2seq models are pretrained on the weakly labled corpus and fine-tuned on the mixed data.

Overall we upload the following five models. For other model configurations and checkpoints please get in contact with us:

  • satyaalmasian/temporal_tagger_roberta2roberta: Our best perfoming model from the paper, an encoder-decoder architecture using RoBERTa. The model is pre-trained on weakly labeled news articles, tagged with HeidelTime, and fined-tuned on the train set of TempEval-3, Tweets, and Wikiwars.
  • satyaalmasian/temporal_tagger_bert2bert: Our second seq2seq model , an encoder-decoder architecture using BERT. The model is pre-trained on weakly labeled news articles, tagged with HeidelTime, and fined-tuned on the train set of TempEval-3, Tweets, and Wikiwars.
  • satyaalmasian/temporal_tagger_BERT_tokenclassifier: BERT for token classification model or vanilla BERT model from the paper. This model is only trained on the train set of TempEval-3, Tweets, and Wikiwars.
  • satyaalmasian/temporal_tagger_DATEBERT_tokenclassifier: BERT for token classification with an extra date embedding, that encodes the reference date of the document. If the document does not have a reference date, it is best to avoid this model. Moreover, since the architecture is a modification of a default hugginface model, the usage is not as straightforward and requires the classes defined in the temporal_model module. This model is only trained on the train set of TempEval-3, Tweets, and Wikiwars.
  • satyaalmasian/temporal_tagger_BERTCRF_tokenclassifier :BERT for token classification with a CRF layer on the output. Moreover, since the architecture is a modification of a default huggingface model, the usage is not as straightforward and requires the classes defined in the temporal_model module. This model is only trained on the train set of TempEval-3, Tweets, and Wikiwars.

In the examples module, you find two scripts model_hub_seq2seq_examples.py and model_hub_tokenclassifiers_examples.py for seq2seq and token classification examples using the hugginface model hub. The examples load the models and use them on example sentences for tagging. The seq2seq example uses the pre-defined post-processing from the tempeval evaluation and contains rules for the cases we came across in the benchmark dataset. If you plan to use these models on new data, it is best to observe the raw output of the first few samples to detect possible format problems that are easily fixable. Further fine-tuning of the models is also possible. For seq2seq models you can simply load the models with

tokenizer = AutoTokenizer.from_pretrained("satyaalmasian/temporal_tagger_roberta2roberta")
model = EncoderDecoderModel.from_pretrained("satyaalmasian/temporal_tagger_roberta2roberta")

and use the DataProcessor from temporal_models.seq2seq_utils to preprocess the json dataset. The model can be fine-tuned using Seq2SeqTrainer (same as in run_seq2seq_bert_roberta.py). For token classifiers the model and the tokenizers are loaded as follows:

tokenizer = AutoTokenizer.from_pretrained("satyaalmasian/temporal_tagger_BERT_tokenclassifier", use_fast=False)
model = BertForTokenClassification.from_pretrained("satyaalmasian/temporal_tagger_BERT_tokenclassifier")

Classifiers need a BIO-tagged file that can be loaded using TokenClassificationDataset and fine-tuned with the hugginface Trainer. For more information on the usage of these models refer to their model hub page.

Citation

If you use our models in your work, we would appreciate attribution with the following citation:

@article{almasian2021bert,
  title={{BERT got a Date: Introducing Transformers to Temporal Tagging}},
  author={Almasian, Satya and Aumiller, Dennis and Gertz, Michael},
  journal={arXiv},
  year={2021}
}
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023