Complete system for facial identity system

Overview

Facial Identity system

⭐️ ⭐️ This repo is still updating

Introduction

This project is to utilize facial recognition to create a facial identity system. Our backend is constructed by one-shot models which is more flexible for adding a new face. The system is built on personal computer and Jetson Nano. Jetson Nano is used to recognized the faces and upload the detected information to Firebase. Users who used our application with account and password can log in to control the database and also see the information.

Folder structure

| - backend - For Personal computer
|
| - csv_file - Contribution for the CelebA dataset
|
| - jetson - Files for Jetson Nano
|
| - model - Model we used for training and detecting

Features

Our facial identity system includes below features:

  • One-shot face recognition, add your faces without extra training
  • Complete database operation (upload, delete, update)
  • Fine-tuned your model at any time
  • Use as a monitor
  • Visualize the features

Installation

Personal computer

$ pip install -r requirements.txt

Jetson Nano

$ pip install -r requirements.txt

Increase swap space on Jetson Nano (Optional)

Our nano would crush when using cuda until we increase its swap memory 🥳

> /etc/fstab'">
# 4.0G is the swap space
$ sudo fallocate -l 4.0G /swapfile
$ sudo chmod 600 /swapfile
$ sudo mkswap /swapfile
$ sudo swapon /swapfile

# Create swap memory on every reboot
$ sudo bash -c 'echo "/var/swapfile swap swap defaults 0 0" >> /etc/fstab'

Experiments

Result for real-time training

Type Original New
Cosine Similarity Positive 0.9889 0.9863
Negative 0.7673 0.6695
L2 Distance Positive 0.1491 0.1655
Negative 0.6822 0.8130

Run time using different methods

  • second per image (s / img)
CPU (Pytorch) Cuda (Pytorch) ONNX TensorRT
4.11s 75.329s 0.1260s 1.975s

It is surprising that cuda consumes lots of time. We guess it is because cuda rely on huge amount of swap memory that slow down its runtime 😢 .

Contribution to CelebA

In order to train one-shot model, we obtain the face's coordinates beforehand. All files are placed in csv_file.

The coordinates were obtained from facenet-pytorch

File name Description
id_multiple.csv To ensure each celebrity have at least two images (For positive usage).
cropped.csv Include the face's coordinates and ensure each celebrity has at least two images.

Citation

@inproceedings{liu2015faceattributes,
  title = {Deep Learning Face Attributes in the Wild},
  author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
  booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
  month = {December},
  year = {2015} 
}

@inproceedings{koch2015siamese,
  title={Siamese neural networks for one-shot image recognition},
  author={Koch, Gregory and Zemel, Richard and Salakhutdinov, Ruslan and others},
  booktitle={ICML deep learning workshop},
  volume={2},
  year={2015},
  organization={Lille}
}

@inproceedings{chen2020simple,
  title={A simple framework for contrastive learning of visual representations},
  author={Chen, Ting and Kornblith, Simon and Norouzi, Mohammad and Hinton, Geoffrey},
  booktitle={International conference on machine learning},
  pages={1597--1607},
  year={2020},
  organization={PMLR}
}

@inproceedings{schroff2015facenet,
  title={Facenet: A unified embedding for face recognition and clustering},
  author={Schroff, Florian and Kalenichenko, Dmitry and Philbin, James},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={815--823},
  year={2015}
}
You might also like...
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

The world's simplest facial recognition api for Python and the command line
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial muscle movements (e.g., action units), and facial landmarks, from videos and images of faces, as well as methods to preprocess, analyze, and visualize FEX data.

Instant Real-Time Example-Based Style Transfer to Facial Videos
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

Releases(weight)
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022