Complete system for facial identity system

Overview

Facial Identity system

⭐️ ⭐️ This repo is still updating

Introduction

This project is to utilize facial recognition to create a facial identity system. Our backend is constructed by one-shot models which is more flexible for adding a new face. The system is built on personal computer and Jetson Nano. Jetson Nano is used to recognized the faces and upload the detected information to Firebase. Users who used our application with account and password can log in to control the database and also see the information.

Folder structure

| - backend - For Personal computer
|
| - csv_file - Contribution for the CelebA dataset
|
| - jetson - Files for Jetson Nano
|
| - model - Model we used for training and detecting

Features

Our facial identity system includes below features:

  • One-shot face recognition, add your faces without extra training
  • Complete database operation (upload, delete, update)
  • Fine-tuned your model at any time
  • Use as a monitor
  • Visualize the features

Installation

Personal computer

$ pip install -r requirements.txt

Jetson Nano

$ pip install -r requirements.txt

Increase swap space on Jetson Nano (Optional)

Our nano would crush when using cuda until we increase its swap memory 🥳

> /etc/fstab'">
# 4.0G is the swap space
$ sudo fallocate -l 4.0G /swapfile
$ sudo chmod 600 /swapfile
$ sudo mkswap /swapfile
$ sudo swapon /swapfile

# Create swap memory on every reboot
$ sudo bash -c 'echo "/var/swapfile swap swap defaults 0 0" >> /etc/fstab'

Experiments

Result for real-time training

Type Original New
Cosine Similarity Positive 0.9889 0.9863
Negative 0.7673 0.6695
L2 Distance Positive 0.1491 0.1655
Negative 0.6822 0.8130

Run time using different methods

  • second per image (s / img)
CPU (Pytorch) Cuda (Pytorch) ONNX TensorRT
4.11s 75.329s 0.1260s 1.975s

It is surprising that cuda consumes lots of time. We guess it is because cuda rely on huge amount of swap memory that slow down its runtime 😢 .

Contribution to CelebA

In order to train one-shot model, we obtain the face's coordinates beforehand. All files are placed in csv_file.

The coordinates were obtained from facenet-pytorch

File name Description
id_multiple.csv To ensure each celebrity have at least two images (For positive usage).
cropped.csv Include the face's coordinates and ensure each celebrity has at least two images.

Citation

@inproceedings{liu2015faceattributes,
  title = {Deep Learning Face Attributes in the Wild},
  author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
  booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
  month = {December},
  year = {2015} 
}

@inproceedings{koch2015siamese,
  title={Siamese neural networks for one-shot image recognition},
  author={Koch, Gregory and Zemel, Richard and Salakhutdinov, Ruslan and others},
  booktitle={ICML deep learning workshop},
  volume={2},
  year={2015},
  organization={Lille}
}

@inproceedings{chen2020simple,
  title={A simple framework for contrastive learning of visual representations},
  author={Chen, Ting and Kornblith, Simon and Norouzi, Mohammad and Hinton, Geoffrey},
  booktitle={International conference on machine learning},
  pages={1597--1607},
  year={2020},
  organization={PMLR}
}

@inproceedings{schroff2015facenet,
  title={Facenet: A unified embedding for face recognition and clustering},
  author={Schroff, Florian and Kalenichenko, Dmitry and Philbin, James},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={815--823},
  year={2015}
}
You might also like...
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

The world's simplest facial recognition api for Python and the command line
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial muscle movements (e.g., action units), and facial landmarks, from videos and images of faces, as well as methods to preprocess, analyze, and visualize FEX data.

Instant Real-Time Example-Based Style Transfer to Facial Videos
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

Releases(weight)
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022