Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

Overview

HyFactor

Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source architecture HyFactor which is inspired by previously reported DEFactor architecture and based on hydrogen labeled graphs. Since the original DEFactor code was not available, its updated implementation (ReFactor) was prepared in this work for benchmarking purposes.

For more details please refer to the paper

If you are using this repository in your paper, please cite us as:

Akhmetshin T, Lin A, Mazitov D, Ziaikin E, Madzhidov T, Varnek A (2021) 
HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder. 
ChemRxiv. doi: 10.26434/chemrxiv-2021-18x0d

Data

All materials used in the publication are availible on Figshare project page

Data sets

The standardized data sets and training/validation splits:

  1. ZINC 250K standardized data set
  2. ChEMBL v.27 standardized data set
  3. The MOSES data set was used as it is

The original data sets were taken from:

  1. Original ZINC 250K data set
  2. ChEMBL page
  3. MOSES benchmarking GitHub repository

Models weights

The weights of Autoencoders from the experiments are available on Figshare

Installation

Installation with conda (preffered)

First, download the repository on your machine. Then, create conda enviroment with the folowing code:

conda env create -f enviroment.yml

When your enviroment is ready, activate it and execute command to install the architecture:

python3 setup.py install

Installation with pip

In this case you should create enviroment folder anywhere you prefer, install here the enviroment and activate it:

mkdir hyfactor_env
python3 -m venv hyfactor_env/
source hyfactor_env/bin/activate

Then, similarly as with conda, you just run the folowing code:

python3 setup.py install

Usage

Before start

This tool works in two modes: command-line and as usual python package. In both ways you should specify config file which will be used for every task. The examples of config file you can find in the folder examples/configs.

Command-line interface

Once you specified your config file, execute the AutoEncoder with folowing command:

hyfactor -cfg YOUR_CONFIG_FILE.yaml

Python interface

Here you can simply import the HYFactor package in folowing way:

from HYFactor import task_preparer
import yaml

with open('YOUR_CONFIG_FILE.yaml', 'r') as file:
    config = yaml.load(file, Loader=yaml.SafeLoader)

run_ae(config)

Contributing

We welcome contributions, in the form of issues or pull requests.

If you have a question or want to report a bug, please submit an issue.

To contribute with code to the project, follow these steps:

  1. Fork this repository.
  2. Create a branch: git checkout -b <branch_name>.
  3. Make your changes and commit them: git commit -m '<commit_message>'
  4. Push to the remote branch: git push
  5. Create the pull request.

Copyright

Owner
Laboratoire-de-Chemoinformatique
Chemoinformatics Laboratory
Laboratoire-de-Chemoinformatique
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021