Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

Overview

HyFactor

Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source architecture HyFactor which is inspired by previously reported DEFactor architecture and based on hydrogen labeled graphs. Since the original DEFactor code was not available, its updated implementation (ReFactor) was prepared in this work for benchmarking purposes.

For more details please refer to the paper

If you are using this repository in your paper, please cite us as:

Akhmetshin T, Lin A, Mazitov D, Ziaikin E, Madzhidov T, Varnek A (2021) 
HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder. 
ChemRxiv. doi: 10.26434/chemrxiv-2021-18x0d

Data

All materials used in the publication are availible on Figshare project page

Data sets

The standardized data sets and training/validation splits:

  1. ZINC 250K standardized data set
  2. ChEMBL v.27 standardized data set
  3. The MOSES data set was used as it is

The original data sets were taken from:

  1. Original ZINC 250K data set
  2. ChEMBL page
  3. MOSES benchmarking GitHub repository

Models weights

The weights of Autoencoders from the experiments are available on Figshare

Installation

Installation with conda (preffered)

First, download the repository on your machine. Then, create conda enviroment with the folowing code:

conda env create -f enviroment.yml

When your enviroment is ready, activate it and execute command to install the architecture:

python3 setup.py install

Installation with pip

In this case you should create enviroment folder anywhere you prefer, install here the enviroment and activate it:

mkdir hyfactor_env
python3 -m venv hyfactor_env/
source hyfactor_env/bin/activate

Then, similarly as with conda, you just run the folowing code:

python3 setup.py install

Usage

Before start

This tool works in two modes: command-line and as usual python package. In both ways you should specify config file which will be used for every task. The examples of config file you can find in the folder examples/configs.

Command-line interface

Once you specified your config file, execute the AutoEncoder with folowing command:

hyfactor -cfg YOUR_CONFIG_FILE.yaml

Python interface

Here you can simply import the HYFactor package in folowing way:

from HYFactor import task_preparer
import yaml

with open('YOUR_CONFIG_FILE.yaml', 'r') as file:
    config = yaml.load(file, Loader=yaml.SafeLoader)

run_ae(config)

Contributing

We welcome contributions, in the form of issues or pull requests.

If you have a question or want to report a bug, please submit an issue.

To contribute with code to the project, follow these steps:

  1. Fork this repository.
  2. Create a branch: git checkout -b <branch_name>.
  3. Make your changes and commit them: git commit -m '<commit_message>'
  4. Push to the remote branch: git push
  5. Create the pull request.

Copyright

Owner
Laboratoire-de-Chemoinformatique
Chemoinformatics Laboratory
Laboratoire-de-Chemoinformatique
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023