Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Overview

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Abstract

Facial expression recognition in videos is an active area of research in computer vision. However, fake facial expressions are difficult to be recognized even by humans. On the other hand, facial micro-expressions generally represent the actual emotion of a person, as it is a spontaneous reaction expressed through human face. Despite of a few attempts made for recognizing micro-expressions, still the problem is far from being a solved problem, which is depicted by the poor rate of accuracy shown by the state-of-the-art methods. A few CNN based approaches are found in the literature to recognize micro-facial expressions from still images. Whereas, a spontaneous micro-expression video contains multiple frames that have to be processed together to encode both spatial and temporal information. This paper proposes two 3D-CNN methods: MicroExpSTCNN and MicroExpFuseNet, for spontaneous facial micro-expression recognition by exploiting the spatiotemporal information in CNN framework. The MicroExpSTCNN considers the full spatial information, whereas the MicroExpFuseNet is based on the 3D-CNN feature fusion of the eyes and mouth regions. The experiments are performed over CAS(ME)^2 and SMIC micro-expression databases. The proposed MicroExpSTCNN model outperforms the state-of-the-art methods.

Prerequisites

Results

Method Proposed Year Method Type CAS(ME)^2 SMIC
LBP-TOP 2013 HCM - 42.72%
STCLQP 2016 HCM - 64.02%
CNN with Augumentation 2017 DLM 78.02% -
3D-FCNN 2018 DLM - 55.49%
MicroExpSTCNN Proposed DLM 87.80% 68.75%
Intermediate MicroExpFuseNet Proposed DLM 83.25% 54.77%
Late MicroExpFuseNet Proposed DLM 79.31% 64.82%

Validation Data and Weights

CASME-SQUARE

SMIC

Citation

If you use this code in your research, we would appreciate a citation:

@article{reddy2019microexpression,
        title={Spontaneous Facial Micro-Expression Recognition using 3D Spatiotemporal Convolutional Neural Networks},
        author={Sai Prasanna Teja, Reddy and Surya Teja, Karri and Dubey, Shiv Ram and Mukherjee, Snehasis},
        journal={International Joint Conference on Neural Networks},
        year={2019}
        }

License

Copyright (c) 2019 Bogireddy Teja Reddy. Released under the MIT License. See LICENSE for details.

Owner
Bogireddy Sai Prasanna Teja Reddy
Bogireddy Sai Prasanna Teja Reddy
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022