This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

Related tags

Deep LearningCRGNN
Overview

CRGNN

Paper : Improving the Training of Graph Neural Networks with Consistency Regularization

Environments

Implementing environment: GeForce RTX™ 3090 24GB (GPU)

Requirements

pytorch>=1.8.1

ogb=1.3.2

numpy=1.21.2

cogdl (latest version)

Training

GAMLP+RLU+SCR

For ogbn-products:

Params: 3335831
python pre_processing.py --num_hops 5 --dataset ogbn-products

python main.py --use-rlu --method R_GAMLP_RLU --stages 400 300 300 300 300 300 --train-num-epochs 0 0 0 0 0 0 --threshold 0.85 --input-drop 0.2 --att-drop 0.5 --label-drop 0 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --act leaky_relu --batch_size 50000 --patience 300 --n-layers-1 4 --n-layers-2 4 --bns --gama 0.1 --consis --tem 0.5 --lam 0.1 --hidden 512 --ema

GAMLP+MCR

For ogbn-products:

Params: 3335831
python pre_processing.py --num_hops 5 --dataset ogbn-products

python main.py --use-rlu --method R_GAMLP_RLU --stages 800 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.5 --label-drop 0 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --act leaky_relu --batch_size 100000 --patience 300 --n-layers-1 4 --n-layers-2 4 --bns --gama 0.1 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.999 --lr 0.001 --adap --gap 10 --warm_up 150 --top 0.9 --down 0.8 --kl --kl_lam 0.2 --hidden 512

GIANT-XRT+GAMLP+MCR

Please follow the instruction in GIANT to get the GIANT-XRT node features.

For ogbn-products:

Params: 2144151
python pre_processing.py --num_hops 5 --dataset ogbn-products --giant_path " "

python main.py --use-rlu --method R_GAMLP_RLU --stages 800 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.5 --label-drop 0 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --act leaky_relu --batch_size 100000 --patience 300 --n-layers-1 4 --n-layers-2 4 --bns --gama 0.1 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.99 --lr 0.001 --adap --gap 10 --warm_up 150 --kl --kl_lam 0.2 --hidden 256 --down 0.7 --top 0.9 --giant

SAGN+MCR

For ogbn-products:

Params: 2179678
python pre_processing.py --num_hops 3 --dataset ogbn-products

python main.py --method SAGN --stages 1000 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.4 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --batch_size 100000 --patience 300 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.99 --lr 0.001 --adap --gap 20 --warm_up 150 --top 0.85 --down 0.75 --kl --kl_lam 0.01 --hidden 512 --zero-inits --dropout 0.5 --num-heads 1  --label-drop 0.5  --mlp-layer 2 --num_hops 3 --label_num_hops 14

GIANT-XRT+SAGN+MCR

Please follow the instruction in GIANT to get the GIANT-XRT node features.

For ogbn-products:

Params: 1154654
python pre_processing.py --num_hops 3 --dataset ogbn-products --giant_path " "

python main.py --method SAGN --stages 1000 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.4 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --batch_size 50000 --patience 300 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.99 --lr 0.001 --adap --gap 20 --warm_up 100 --top 0.85 --down 0.75 --kl --kl_lam 0.02 --hidden 256 --zero-inits --dropout 0.5 --num-heads 1  --label-drop 0.5  --mlp-layer 1 --num_hops 3 --label_num_hops 9 --giant

Use Optuna to search for C&S hyperparameters

We searched hyperparameters using Optuna on validation set.

python post_processing.py --file_name --search

GAMLP+RLU+SCR+C&S

python post_processing.py --file_name --correction_alpha 0.4780826957236622 --smoothing_alpha 0.40049734940262954

GIANT-XRT+SAGN+MCR+C&S

python post_processing.py --file_name --correction_alpha 0.42299283241438157 --smoothing_alpha 0.4294212449832242

Node Classification Results:

Performance on ogbn-products(10 runs):

Methods Validation accuracy Test accuracy
SAGN+MCR 0.9325±0.0004 0.8441±0.0005
GAMLP+MCR 0.9319±0.0003 0.8462±0.0003
GAMLP+RLU+SCR 0.9292±0.0005 0.8505±0.0009
GAMLP+RLU+SCR+C&S 0.9304±0.0005 0.8520±0.0008
GIANT-XRT+GAMLP+MCR 0.9402±0.0004 0.8591±0.0008
GIANT-XRT+SAGN+MCR 0.9389±0.0002 0.8651±0.0009
GIANT-XRT+SAGN+MCR+C&S 0.9387±0.0002 0.8673±0.0008

Citation

Our paper:

@misc{zhang2021improving,
      title={Improving the Training of Graph Neural Networks with Consistency Regularization}, 
      author={Chenhui Zhang and Yufei He and Yukuo Cen and Zhenyu Hou and Jie Tang},
      year={2021},
      eprint={2112.04319},
      archivePrefix={arXiv},
      primaryClass={cs.SI}
}

GIANT paper:

@article{chien2021node,
  title={Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction},
  author={Eli Chien and Wei-Cheng Chang and Cho-Jui Hsieh and Hsiang-Fu Yu and Jiong Zhang and Olgica Milenkovic and Inderjit S Dhillon},
  journal={arXiv preprint arXiv:2111.00064},
  year={2021}
}

GAMLP paper:

@article{zhang2021graph,
  title={Graph attention multi-layer perceptron},
  author={Zhang, Wentao and Yin, Ziqi and Sheng, Zeang and Ouyang, Wen and Li, Xiaosen and Tao, Yangyu and Yang, Zhi and Cui, Bin},
  journal={arXiv preprint arXiv:2108.10097},
  year={2021}
}

SAGN paper:

@article{sun2021scalable,
  title={Scalable and Adaptive Graph Neural Networks with Self-Label-Enhanced training},
  author={Sun, Chuxiong and Wu, Guoshi},
  journal={arXiv preprint arXiv:2104.09376},
  year={2021}
}

C&S paper:

@inproceedings{
huang2021combining,
title={Combining Label Propagation and Simple Models out-performs Graph Neural Networks},
author={Qian Huang and Horace He and Abhay Singh and Ser-Nam Lim and Austin Benson},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=8E1-f3VhX1o}
}
Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022