Python package for visualizing the loss landscape of parameterized quantum algorithms.

Related tags

Deep Learningorqviz
Overview

Image

orqviz

A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc.

orqviz provides a collection of tools which quantum researchers and enthusiasts alike can use for their simulations. It works with any framework for running quantum circuits, for example qiskit, cirq, pennylane, and Orquestra. The package contains functions to generate data, as well as a range of flexible plotting and helper functions. orqviz is light-weight and has very few dependencies.

Getting started

In doc/examples/ we provide a range of Jupyter notebook examples for orqviz. We have four Jupyter notebooks with tutorials for how to get started with any quantum circuit simulation framework you might use. You will find examples with qiskit, cirq, pennylane and Zapata's Orquestra library. The tutorials are not exhaustive, but they do provide a full story that you can follow along.

In this notebook we have the Sombrero example that we showcase in our paper. We also have an advanced example notebook which provides a thorough demonstration of the flexibility of the orqviz package.

We recently published a paper on arXiv where we review the tools available with orqviz:
ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum Algorithms

Installation

You can install our package using the following command:

pip install orqviz

Alternatively you can build the package from source. This is especially helpful if you would like to contribute to orqviz

git clone https://github.com/zapatacomputing/orqviz.git
cd orqviz
pip install -e ./

Examples

import orqviz
import numpy as np

np.random.seed(42)

def loss_function(pars):
    return np.sum(np.cos(pars))**2 + np.sum(np.sin(30*pars))**2

n_params = 42
params = np.random.uniform(-np.pi, np.pi, size=n_params)
dir1 = orqviz.geometric.get_random_normal_vector(n_params)
dir2 = orqviz.geometric.get_random_orthonormal_vector(dir1)

scan2D_result = orqviz.scans.perform_2D_scan(params, loss_function,
                                direction_x=dir1, direction_y=dir2,
                                n_steps_x=100)
orqviz.scans.plot_2D_scan_result(scan2D_result)

This code results in the following plot:

Image

Authors

The leading developer of this package is Manuel Rudolph at Zapata Computing.
For questions related to the visualization techniques, contact Manuel via [email protected] .

The leading software developer of this package is Michał Stęchły at Zapata Computing.
For questions related to technicalities of the package, contact Michał via [email protected] .

Thank you to Sukin Sim and Luis Serrano from Zapata Computing for their contributions to the tutorials.

You can also contact us or ask general questions using GitHub Discussions.

For more specific code issues, bug fixes, etc. please open a GitHub issue in the orqviz repository.

If you are doing research using orqviz, please cite our paper:

ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum Algorithms

How to contribute

Please see our Contribution Guidelines.

Comments
  • Use transpile to build circuit only once

    Use transpile to build circuit only once

    Despite being wrapped up in a lambda function, the get_circuit function is actually still called for every function evaluation during plot generation or optimization, and hence the circuit is rebuilt each time. This rather defeats the concept of late binding of the parameter values. The PR uses a slightly different approach using the transpile function. The code is arguably more transparent than using the lambda function wrapper. Evaluation is faster now, but for this simple case rarely more than 10%. One downside, the circuit cannot be plotted anymore in a simple way.

    opened by RonMeiburg 11
  • ci: add step with Pythonic cruft cleanup

    ci: add step with Pythonic cruft cleanup

    Apparently, issues that we had with mypy stem from Github Actions caching some (?) directories (thanks @alexjuda for pointing this out!). This PR adds a cleaning step (taken from z-quantum-actions) that deletes potentially conflicting directories.

    opened by dexter2206 1
  • Clean notebooks

    Clean notebooks

    These are the once-run versions of the cirq and qiskit notebooks derived from the 'simplified qiskit get_circuit() return' commit from the main branch. I hope this works for you. If not, then I apologize, When it comes to git I still suffer from sas every now and then.

    opened by RonMeiburg 1
  • Loss function clarity

    Loss function clarity

    Goals of this draft PR:

    • Allow parameters to be any np.ndarray rather than strictly a 1D np.ndarray
    • Improve docstrings for what we define as a loss function
    • Improve README to specify what we define as a loss function, and how to wrap their loss function with functools.partial
    • Alternatively, allow loss_function_kwargs in the scanning functions that we pass to the loss_function with more than one argument.
    opened by MSRudolph 1
  • Utilize tqdm progress bar when verbose=True during scans.

    Utilize tqdm progress bar when verbose=True during scans.

    Is your feature request related to a problem? Please describe. We should replace the print calls when verbose=True in scans with tqdm from the tqdm library. Alternatively, we make it the default and find a way to mute the library's prints.

    Describe the solution you'd like

    verbose = True  # or False
    for it in tqdm(range(n_iters), disable = not verbose):
       ...  # run scans
    

    Additional context Our verbosity options are currently very rudimentary and tqdm is one of the most used Python libraries.

    opened by MSRudolph 2
  • This repo should contain Issues for how people can contribute

    This repo should contain Issues for how people can contribute

    Is your feature request related to a problem? Please describe. Currently, when people enter the orqviz GitHub repository with the intent to contribute, there are no open Issues and not many PRs. They will not know what might be low-hanging fruit to contribute.

    Describe the solution you'd like We (orqviz developers) should open Issues which are connected to how people can concretely contribute. For example, we could provide links to existing tutorials which we believe can be readily enhanced with our visualization techniques. In such cases, potential contributors could work on such enhancements and reach out to the authors of the original tutorials. Similarly, we can elaborate on future visualization techniques which we could experiment with. This may be done by external contributors.

    opened by MSRudolph 0
Releases(v0.3.0)
  • v0.3.0(Aug 19, 2022)

    What's Changed

    • ci: add step with Pythonic cruft cleanup by @dexter2206 in https://github.com/zapatacomputing/orqviz/pull/43
    • Update main by @mstechly in https://github.com/zapatacomputing/orqviz/pull/44
    • Fourier transform by @laurgao in https://github.com/zapatacomputing/orqviz/pull/45

    Full Changelog: https://github.com/zapatacomputing/orqviz/compare/v0.2.0...v0.3.0

    Source code(tar.gz)
    Source code(zip)
    orqviz-0.3.0-py3-none-any.whl(38.09 KB)
  • v0.2.0(Feb 8, 2022)

    New features:

    • orqviz now doesn't require parameters to be 1D vectors, they can be ND arrays instead
    • We introduced LossFunctionWrapper as a utility tool that helps with changing arbitrary python functions into orqviz-compatible loss functions.

    Minor changes:

    • Improvements in notebook examples
    • Improvements in readme and contribution guidelines
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Nov 9, 2021)

    What's Changed

    • Fixed classifiers in the setup.cfg
    • Minor fixes in in README
    • Relax dependency versions

    Full Changelog: https://github.com/zapatacomputing/orqviz/compare/v0.1.0...v0.1.1

    Source code(tar.gz)
    Source code(zip)
Owner
Zapata Computing, Inc.
Zapata Computing, Inc.
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023