🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

Overview

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

This year's first semester Club Info challenge will put you at the head of a car racing team. You will participate to the world's most famous racing contest, the INGI Dakar. Your goal is to build the best car, and to beat your opponents by reaching the furthest distance from the starting line.

Challenge statement

Each group will be put in charge of a car racing team. Ultimately, your goal is to reach the furthest distance from the starting line, with any of your cars. For this, you will have 6 generations of 20 cars. Each generation will be produced based on the previous one. Your job is thus to implement the algorithm that takes the previous generation of cars in argument, and that produces the next generation. Such an algorithm is called a genetic algorithm, for which a theoretical background is given hereafter.

Genetic algorithms

Genetic algorithms (GA) are inspired by the process of natural selection. They are used to resolve complex problems. They use operators such as mutation, crossover and selection. GA process is split into generations. Each generation is composed of a finite number of individuals which are built from the best individuals of the last generation and one or several operators. The first generation is generally randomly created.

Genetic algorithms are used for a large variety of problems from antenna shape optimization to minimize the weight of structures embarked in mars rovers.

A genetic algorithm is based on three operators:

  • Mutation, a mutation is a random modification of a parameter for an individual in the generation,
  • Crossover, a crossover is the creation of an individual based on parameters values from several members of the last generation,
  • Selection, in a genetic algorithm, we select the best individuals of a generation to construct the next generation.

Alternative text describing the image

The Mutation operator is used to ensure that the selection is not trapped in a local optima and can not reach the global optima for each parameters.

Some useful links:

Program specifications

The program for the INGI Dakar 2K21 is composed of 7 Python modules:

  • Car.py: Defines the class Car that represents a car of the game. A Car is composed of two Wheels and a Chassis, where the Wheels are located on two of the four Chassis vertices.
  • Chassis.py: Defines the class Chassis that represents a car chassis. A Chassis is represented by four vertices connected with each other in a quadrilateral shape.
  • CustomFormatter.py: Used for logging purposes.
  • Game.py: Defines the class Game that represents a game of INGI Dakar 2K21, i.e. the simulation of the 6 generations of 20 cars.
  • main.py: Entry point of INGI Dakar 2K21, which launches the simulations and computes the score.
  • Terrain.py: Defines the class Terrain that represents the terrain on which the cars are driving.
  • Wheel.py: Defines the class Wheel that represents a car's wheel. A Wheel is defined by its radius and the fact that it is a motor wheel or not.

To participate to the challenge, you only have to modify the function next_generation in the module main.py, that takes a representation of the game world (a b2World object) and the previous generation of cars (a list of Car objects) as arguments, and that returns the next generation of cars (also a list of Car objects). The car features that you can update for the next generation are given below.

Car features

A car is composed of the following (the numbers in bold cannot be changed):

  • TWO wheels, one of which is a motor wheel
  • A chassis, composed by FOUR vertices, linked together to form a polygon shape.

The car features that you can modify to reach the maximum distance are the following:

  • Radius of the two wheels, separately.
  • Which wheel is the motor wheel.
  • Position of the four vertices of the chassis.
  • To which of the chassis' vertices the two wheels are attached.

Please consult the corresponding classes to understand how those features are expressed and used in the program.

Score computation

To start the simulation of the challenge, just run the python3 main.py Python module. You must also activate the python virtual environment with source penv/bin/activate.

The execution of the challenge, and computation of your final score, is as follows:

  • Each generation contains 20 cars. The maximum distance reached by any of the cars is recorded as the score of this generation.
  • A game is composed of 6 generations. The score of a game is the maximum score among all the generations.
  • To smoothen the results, 5 games are launched after each other. Your final score is the average of the different score you obtained during the games.

At the end of the 5 games, a plot will be shown, with your results for the 5 games.

Installation and execution

Installation

To install the project, first clone the repository with the following command:

git clone https://github.com/ClubINFO-INGI-UCLouvain/INGI-Dakar-2K21-Challenge.git

Then, install the needed libraries by running the install.sh script, inside the project directory:

python3 -m venv penv;
source  penv/bin/activate;
chmod +x install.sh;
./install.sh;

Execution

To run the challenge simulation, you can simply run the main.py Python module in the src directory, with the following command:

cd src/
python3 main.py [--seed_terrain SEED] [--seed_car SEED] [--no_UI] [--no_plot]

The command line arguments, all optional, are the following:

  • --seed_terrain SEED (with SEED an integer): sets the seed for the random generation of the game terrain to SEED, for reproducibility of the simulations
  • --seed_car SEED (with SEED an integer): sets the seed for the random generation of the first generation of cars to SEED, for reproducibility of the simulations
  • --no_UI: does not show the graphical interface of the game, which drastically speeds up the simulations
  • --no_plot: does not show the plot of the games' result at the end of all the games

Note that, for the contest, the seeds will be fixed for equity among the groups.

There is also a hidden argument, maybe you can try to find it 😉

Owner
ClubINFO INGI (UCLouvain)
ClubINFO INGI (UCLouvain)
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022