Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Overview

Path-Generator-QA

This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering [arxiv][project page]

Code folders:

(1) learning-generator: conduct path sampling and then train the path generator.

(2) commonse-qa: use the generator to generate paths and then train the qa system on task dataset.

(3) A-Commonsense-Path-Generator-for-Connecting-Entities.ipynb: The notebook illustrating how to use our proposed generator to connect a pair of entities with a commonsense relational path.

Part of this code and instruction rely on our another project [code][arxiv]. Please cite both of our works if you use this code. Thanks!

@article{wang2020connecting,
  title={Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering},
  author={Wang, Peifeng and Peng, Nanyun and Szekely, Pedro and Ren, Xiang},
  journal={arXiv preprint arXiv:2005.00691},
  year={2020}
}

@article{feng2020scalable,
  title={Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering},
  author={Feng, Yanlin and Chen, Xinyue and Lin, Bill Yuchen and Wang, Peifeng and Yan, Jun and Ren, Xiang},
  journal={arXiv preprint arXiv:2005.00646},
  year={2020}
}

Dependencies

  • Python >= 3.6
  • PyTorch == 1.1
  • transformers == 2.8.0
  • dgl == 0.3 (GPU version)
  • networkx == 2.3

Run the following commands to create a conda environment:

conda create -n pgqa python=3.6
source activate pgqa
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
pip install dgl-cu100
pip install transformers==2.8.0 tqdm networkx==2.3 nltk spacy==2.1.6
python -m spacy download en

For training a path generator

cd learning-generator
cd data
unzip conceptnet.zip
cd ..
python sample_path_rw.py

After path sampling, shuffle the resulting data './data/sample_path/sample_path.txt' and then split them into train.txt, dev.txt and test.txt by ratio of 0.9:0.05:0.05 under './data/sample_path/'

Then you can start to train the path generator by running

# the first arg is for specifying which gpu to use
./run.sh $gpu_device

The checkpoint of the path generator would be stored in './checkpoints/model.ckpt'. Move it to '../commonsense-qa/saved_models/pretrain_generator'. So far, we are done with training the generator.

Alternatively, you can also download our well-trained path generator checkpoint.

For training a commonsense qa system

1. Download Data

First, you need to download all the necessary data in order to train the model:

cd commonsense-qa
bash scripts/download.sh

2. Preprocess

To preprocess the data, run:

python preprocess.py

3. Using the path generator to connect question-answer entities

(Modify ./config/path_generate.config to specify the dataset and gpu device)

./scripts/run_generate.sh

4. Commonsense QA system training

bash scripts/run_main.sh ./config/csqa.config

Training process and final evaluation results would be stored in './saved_models/'

Owner
Peifeng Wang
Peifeng Wang
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022