Optimize Trading Strategies Using Freqtrade

Overview

Optimize trading strategy using Freqtrade

Short demo on building, testing and optimizing a trading strategy using Freqtrade.

The DevBootstrap YouTube screencast supporting this repo is here. Enjoy! :)

Alias Docker-Compose Command

First, I recommend to alias docker-compose to dc and docker-compose run --rm "$@" to dcr to save of typing.

Put this in your ~/.bash_profile file so that its always aliased like this!

alias dc=docker-compose
dcr() { docker-compose run --rm "$@"; }

Now run source ~/.bash_profile.

Installing Freqtrade

Install and run via Docker.

Now install the necessary dependencies to run Freqtrade:

mkdir ft_userdata
cd ft_userdata/
# Download the dc file from the repository
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml

# Pull the freqtrade image
dc pull

# Create user directory structure
dcr freqtrade create-userdir --userdir user_data

# Create configuration - Requires answering interactive questions
dcr freqtrade new-config --config user_data/config.json

NOTE: Any freqtrade commands are available by running dcr freqtrade <command> <optional arguments>. So the only difference to run the command via docker-compose is to prefix the command with our new alias dcr (which runs docker-compose run --rm "$@" ... see above for details.)

Config Bot

If you used the new-config sub-command (see above) when installing the bot, the installation script should have already created the default configuration file (config.json) for you.

The params that we will set to note are (from config.json). This allows all the available balance to be distrubuted accross all possible trades. So in dry run mode we have a default paper money balance of 1000 (can be changed using dry_run_wallet param) and if we set to have a max of 10 trades then Freqtrade would distribute the funds accrosss all 10 trades aprroximatly equally (1000 / 10 = 100 / trade).

"stake_amount" : "unlimited",
"tradable_balance_ratio": 0.99,

The above are used for Dry Runs and is the 'Dynamic Stake Amount'. For live trading you might want to change this. For example, only allow bot to trade 20% of excahnge account funds and cancel open orders on exit (if market goes crazy!)

"tradable_balance_ratio": 0.2,
"cancel_open_orders_on_exit": true

For details of all available parameters, please refer to the configuration parameters docs.

Create a Strategy

So I've created a 'BBRSINaiveStrategy' based on RSI and Bollenger Bands. Take a look at the file bbrsi_naive_strategy.py file for details.

To tell your instance of Freqtrade about this strategy, open your docker-compose.yml file and update the strategy flag (last flag of the command) to --strategy BBRSINaiveStrategy

For more details on Strategy Customization, please refer to the Freqtrade Docs

Remove past trade data

If you have run the bot already, you will need to clear out any existing dry run trades from the database. The easiest way to do this is to delete the sqlite database by running the command rm user_data/tradesv3.sqlite.

Sandbox / Dry Run

As a quick sanity check, you can now immediately start the bot in a sandbox mode and it will start trading (with paper money - not real money!).

To start trading in sandbox mode, simply start the service as a daemon using Docker Compose, like so and follow the log trail as follows:

dc up -d
dc ps
dc logs -f

Setup a pairs file

We will use Binance so we create a data directory for binance and copy our pairs.json file into that directory:

mkdir -p user_data/data/binance
cp pairs.json user_data/data/binance/.

Now put whatever pairs you are interested to download into the pairs.json file. Take a look at the pairs.json file included in this repo.

Download Data

Now that we have our pairs file in place, lets download the OHLCV data for backtesting our strategy.

dcr freqtrade download-data --exchange binance -t 15m

List the available data using the list-data sub-command:

dcr freqtrade list-data --exchange binance

Manually inspect the json files to examine the data is as expected (i.e. that it contains the expected OHLCV data requested).

List the available data for backtesting

Note to list the available data you need to pass the --data-format-ohlcv jsongz flag as below:

dcr freqtrade list-data --exchange binance

Backtest

Now we have the data for 1h and 4h OHLCV data for our pairs lets Backtest this strategy:

dcr freqtrade backtesting --datadir user_data/data/binance --export trades  --stake-amount 100 -s BBRSINaiveStrategy -i 15m

For details on interpreting the result, refer to 'Understading the backtesting result'

Plotting

Plot the results to see how the bot entered and exited trades over time. Remember to change the Docker image being referenced in the docker-compose file to freqtradeorg/freqtrade:develop_plot before running the below command.

Note that the plot_config that is contained in the strategy will be applied to the chart.

dcr freqtrade plot-dataframe --strategy BBRSINaiveStrategy -p ALGO/USDT -i 15m

Once the plot is ready you will see the message Stored plot as /freqtrade/user_data/plot/freqtrade-plot-ALGO_USDT-15m.html which you can open in a browser window.

Optimize

To optimize the strategy we will use the Hyperopt module of freqtrade. First up we need to create a new hyperopt file from a template:

dcr freqtrade new-hyperopt --hyperopt BBRSIHyperopt

Now add desired definitions for buy/sell guards and triggers to the Hyperopt file. Then run the optimization like so (NOTE: set the time interval and the number of epochs to test using the -i and -e flags:

dcr freqtrade hyperopt --hyperopt BBRSIHyperopt --hyperopt-loss SharpeHyperOptLoss --strategy BBRSINaiveStrategy -i 15m

Update Strategy

Apply the suggested optimized results from the Hyperopt to the strategy. Either replace the current strategy or create a new 'optimized' strategy.

Backtest

Now we have updated our strategy based on the result from the hyperopt lets run a backtest again:

dcr freqtrade backtesting --datadir user_data/data/binance --export trades --stake-amount 100 -s BBRSIOptimizedStrategy -i 15m

Sandbox / Dry Run

Before you run the Dry Run, don't forget to check your local config.json file is configured. Particularly the dry_run is true, the dry_run_wallet is set to something reasonable (like 1000 USDT) and that the timeframe is set to the same that you have used when building and optimizing your strategy!

"max_open_trades": 10,
"stake_currency": "USDT",
"stake_amount" : "unlimited",
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD",
"timeframe": "15min",
"dry_run": true,
"dry_run_wallet": 1000,

View Dry Run via Freq UI

For use with docker you will need to enable the api server in the Freqtrade config and set listen_ip_address to "0.0.0.0", and also set the username & password so that you can login like so:

...

"api_server": {
  "enabled": true,
  "listen_ip_address": "0.0.0.0",
  "username": "Freqtrader",
  "password": "secretpass!",
P
...

In the docker-compose.yml file also map the ports like so:

ports:
  - "127.0.0.1:8080:8080"

Then you can access the Freq UI via a browser at http://127.0.0.1:8080/. You can also access and control the bot via a REST API too!

Owner
DevBootstrap
Full Stack Blockchain Developer Tutorials
DevBootstrap
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023