Cowsay - A rewrite of cowsay in python

Related tags

Deep Learningcowsay
Overview

Python Cowsay

A rewrite of cowsay in python. Allows for parsing of existing .cow files.

Install

pip install python-cowsay

Usage

The classic cowsay can be generated by the cowsay or cowthink functions:

from cowsay import cowsay

message = """
The most remarkable thing about my mother is that for thirty years she served
the family nothing but leftovers.  The original meal has never been found.
		-- Calvin Trillin
""".strip()
print(cowsay(message))

Will yield:

 __________________________________________ 
/ The most remarkable thing about my       \
| mother is that for thirty years she      |
| served the family nothing but leftovers. |
| The original meal has never been found.  |
|                                          |
\ -- Calvin Trillin                        /
 ------------------------------------------ 
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||

The parameters for these functions are:

  • message – a string to wrap in the text bubble
  • cow='default' – the name of the cow (valid names from list_cows)
  • preset=None – the original cowsay presets: -bggpstwy
  • eyes=Option.eyes – A custom eye string
  • tongue=Option.tongue – A custom tongue string
  • width=40 – The width of the text bubble
  • wrap_text=True – Whether text should be wrapped in the bubble
  • cowfile=None – A custom string representing a cow

Other Functions

The available builtin cows can be found with list_cows. A cow can be chosen randomly from this list with get_random_cow.

Using Your Own Cows

A custom .cow file can be parsed using the read_dot_cow function which takes a TextIO stream. I.e., You can either create a TextIO from a string or read a file.

The read_dot_cow will look for the first heredoc in the steam and extract the heredoc contents. If no heredoc exists, the whole stream is used instead. Escape characters are then escaped. The default escape characters can be changed by passing in an optional escape dictionary parameter mapping escape codes to their chars.

For example:

from io import StringIO

from cowsay import read_dot_cow, cowthink

cow = read_dot_cow(StringIO("""
$the_cow = <<EOC;
         $thoughts
          $thoughts
           ___
          (o o)
         (  V  )
        /--m-m-
EOC
"""))
message = """
Nothing is illegal if one hundred businessmen decide to do it.
        -- Andrew Young
""".strip()
print(cowthink(message, cowfile=cow))

Will yield:

 ___________________________________ 
( Nothing is illegal if one hundred )
( businessmen decide to do it.      )
(                                   )
( -- Andrew Young                   )
 ----------------------------------- 
         o
          o
           ___
          (o o)
         (  V  )
        /--m-m-
Owner
James Ansley
PhD candidate at the University of Auckland.
James Ansley
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022