Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Overview

Ejemplo Algoritmo Viterbi

Ejemplo de un algoritmo Viterbi aplicado a modelo oculto de Márkov sobre secuencia de ADN

Introducción.

En los diferentes campos existen fenómenos estocásticos cuyas variables de estudio presentan una evolución temporal, de tal forma, que el valor futuro de las variables de estudio depende únicamente de su valor presente, siendo independiente del histórico de la variable. Cuando el proceso de estudio presenta esta característica, se dice que cumple con la propiedad de Márkov y por tanto se pueden modelar en procesos de Márkov.

Un proceso de Márkov es una serie de experimentos en el que cada uno tiene m posibles resultados (E1, E2.....Em), y la probabilidad de cada resultado depende exclusivamente del que se haya obtenido en los experimentos previos, o lo que es lo mismo, el valor futuro depende de su valor presente. Adicionalmente, cuando los parámetros no se conocen, se dice que el problema está expresado en un modelo oculto de Márkov (HMM por sus siglas en ingles)

Mediante un simple ejemplo, se pretende resolver un problema de secuenciación de ADN expresado en un HMM usando un algoritmo de Viterbi programado en lenguaje Python.

Problema propuesto.

Considere un problema de bioinformática de 2 estados: Alto y Bajo. El estado alto caracteriza ADN codificado (Alto contenido de Guanina y Citosina) y el estado bajo caracteriza ADN no codificado (Bajo contenido de Guanina y citosina). El problema tiene las siguientes probabilidades:

  • Inicio.
    • Estado alto: 0.5
    • Estado bajo: 0.5
  • Transición:
    • Alto a bajo: 0.5
    • Alto a alto: 0.5
    • Bajo a alto: 0.4
    • Bajo a bajo: 0.6
  • Emisión estado alto:
    • Adenina: 0.2
    • Citosina: 0.3
    • Guanina: 0.3
    • Timina: 0.2
  • Emisión estado bajo:
    • Adenina: 0.3
    • Citosina: 0.2
    • Guanina: 0.2
    • Timina: 0.3

Conociendo las probabilidades de inicio, transición y emisión, es posible modelar en un HMM, tal como se muestra a continuación:

modelo HMM

El modelo puede ser usado para predecir la región de ADN codificado dada una secuencia:

  • GGCACTGAA

Metodología y algoritmo

Para resolver este problema de estado oculto de Márkov se aprovechará el algoritmo de Viterbi. El algoritmo de Viterbi es un algoritmo de programación dinámica que permite calcular la ruta de estados mas probable en un modelo de estado oculto HMM, es decir, obtiene la secuencia óptima que mejor explica la secuencia de observaciones. (Para mas información ver https://en.wikipedia.org/wiki/Viterbi_algorithm)

El algoritmo

El algoritmo fue desarrollado en Python sin uso de librerías o módulos extra. [DNA_viterbi.py] En la cabecera del código, se programaron 2 ejemplos de secuencia como tupla de caracteres, siendo la secuencia 1 la requerida en el problema (GGCACTGAA). Posteriormente se programan las probabilidades del problema. Estados como lista de caracteres, y probabilidades como diccionarios anidados. Finalmente, el código contiene dos funciones:

  • viterbi: Algoritmo de interés que procesa el HMM.
  • dptable: Función auxiliar para la impresión de resultados por consola.

Resultados

Al ejecutar el algoritmo anterior se obtienen los siguientes resultados:

G G C A C T G A A
Alto (H) 0.15000 0.02250 0.00337 0.00033 0.00006 0.00000 0.00000 0.00000 0.00000
Bajo (L) 0.10000 0.01500 0.00225 0.00050 0.00006 0.00001 0.00000 0.00000 0.00000

De estos resultados se obtiene que la ruta mas probable de estado es:

H -> H -> H -> L -> L -> L -> L -> L -> L

con una mayor probabilidad de 4.25e-08

Referencias

Owner
Mateo Velásquez Molina
Mateo Velásquez Molina
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022