Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Overview

Ejemplo Algoritmo Viterbi

Ejemplo de un algoritmo Viterbi aplicado a modelo oculto de Márkov sobre secuencia de ADN

Introducción.

En los diferentes campos existen fenómenos estocásticos cuyas variables de estudio presentan una evolución temporal, de tal forma, que el valor futuro de las variables de estudio depende únicamente de su valor presente, siendo independiente del histórico de la variable. Cuando el proceso de estudio presenta esta característica, se dice que cumple con la propiedad de Márkov y por tanto se pueden modelar en procesos de Márkov.

Un proceso de Márkov es una serie de experimentos en el que cada uno tiene m posibles resultados (E1, E2.....Em), y la probabilidad de cada resultado depende exclusivamente del que se haya obtenido en los experimentos previos, o lo que es lo mismo, el valor futuro depende de su valor presente. Adicionalmente, cuando los parámetros no se conocen, se dice que el problema está expresado en un modelo oculto de Márkov (HMM por sus siglas en ingles)

Mediante un simple ejemplo, se pretende resolver un problema de secuenciación de ADN expresado en un HMM usando un algoritmo de Viterbi programado en lenguaje Python.

Problema propuesto.

Considere un problema de bioinformática de 2 estados: Alto y Bajo. El estado alto caracteriza ADN codificado (Alto contenido de Guanina y Citosina) y el estado bajo caracteriza ADN no codificado (Bajo contenido de Guanina y citosina). El problema tiene las siguientes probabilidades:

  • Inicio.
    • Estado alto: 0.5
    • Estado bajo: 0.5
  • Transición:
    • Alto a bajo: 0.5
    • Alto a alto: 0.5
    • Bajo a alto: 0.4
    • Bajo a bajo: 0.6
  • Emisión estado alto:
    • Adenina: 0.2
    • Citosina: 0.3
    • Guanina: 0.3
    • Timina: 0.2
  • Emisión estado bajo:
    • Adenina: 0.3
    • Citosina: 0.2
    • Guanina: 0.2
    • Timina: 0.3

Conociendo las probabilidades de inicio, transición y emisión, es posible modelar en un HMM, tal como se muestra a continuación:

modelo HMM

El modelo puede ser usado para predecir la región de ADN codificado dada una secuencia:

  • GGCACTGAA

Metodología y algoritmo

Para resolver este problema de estado oculto de Márkov se aprovechará el algoritmo de Viterbi. El algoritmo de Viterbi es un algoritmo de programación dinámica que permite calcular la ruta de estados mas probable en un modelo de estado oculto HMM, es decir, obtiene la secuencia óptima que mejor explica la secuencia de observaciones. (Para mas información ver https://en.wikipedia.org/wiki/Viterbi_algorithm)

El algoritmo

El algoritmo fue desarrollado en Python sin uso de librerías o módulos extra. [DNA_viterbi.py] En la cabecera del código, se programaron 2 ejemplos de secuencia como tupla de caracteres, siendo la secuencia 1 la requerida en el problema (GGCACTGAA). Posteriormente se programan las probabilidades del problema. Estados como lista de caracteres, y probabilidades como diccionarios anidados. Finalmente, el código contiene dos funciones:

  • viterbi: Algoritmo de interés que procesa el HMM.
  • dptable: Función auxiliar para la impresión de resultados por consola.

Resultados

Al ejecutar el algoritmo anterior se obtienen los siguientes resultados:

G G C A C T G A A
Alto (H) 0.15000 0.02250 0.00337 0.00033 0.00006 0.00000 0.00000 0.00000 0.00000
Bajo (L) 0.10000 0.01500 0.00225 0.00050 0.00006 0.00001 0.00000 0.00000 0.00000

De estos resultados se obtiene que la ruta mas probable de estado es:

H -> H -> H -> L -> L -> L -> L -> L -> L

con una mayor probabilidad de 4.25e-08

Referencias

Owner
Mateo Velásquez Molina
Mateo Velásquez Molina
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022