Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Overview

Swapping Autoencoder for Deep Image Manipulation

Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang

UC Berkeley and Adobe Research

teaser

Project page | Paper | 3 Min Video

Overview

Swapping Autoencoder consists of autoencoding (top) and swapping (bottom) operation. Top: An encoder E embeds an input (Notre-Dame) into two codes. The structure code is a tensor with spatial dimensions; the texture code is a 2048-dimensional vector. Decoding with generator G should produce a realistic image (enforced by discriminator D matching the input (reconstruction loss). Bottom: Decoding with the texture code from a second image (Saint Basil's Cathedral) should look realistic (via D) and match the texture of the image, by training with a patch co-occurrence discriminator Dpatch that enforces the output and reference patches look indistinguishable.

Installation / Requirements

  • CUDA 10.1 or newer is required because it uses a custom CUDA kernel of StyleGAN2, ported by @rosinality
  • The author used PyTorch 1.7.1 on Python 3.6
  • Install dependencies with pip install dominate torchgeometry func-timeout tqdm matplotlib opencv_python lmdb numpy GPUtil Pillow scikit-learn visdom

Testing and Evaluation.

We provide the pretrained models and also several images that reproduce the figures of the paper. Please download and unzip them here (2.1GB). The scripts assume that the checkpoints are at ./checkpoints/, and the test images at ./testphotos/, but they can be changed by modifying --checkpoints_dir and --dataroot options.

Swapping and Interpolation of the mountain model using sample images

To run simple swapping and interpolation, specify the two input reference images, change input_structure_image and input_texture_image fields of experiments/mountain_pretrained_launcher.py, and run

python -m experiments mountain_pretrained test simple_swapping
python -m experiments mountain_pretrained test simple_interpolation

The provided script, opt.tag("simple_swapping") and opt.tag("simple_interpolation") in particular of experiments/mountain_pretrained_launcher.py, invokes a terminal command that looks similar to the following one.

python test.py --evaluation_metrics simple_swapping \
--preprocess scale_shortside --load_size 512 \
--name mountain_pretrained  \
--input_structure_image [path_to_sample_image] \
--input_texture_image [path_to_sample_image] \
--texture_mix_alpha 0.0 0.25 0.5 0.75 1.0

In other words, feel free to use this command if that feels more straightforward.

The output images are saved at ./results/mountain_pretrained/simpleswapping/.

Texture Swapping

Our Swapping Autoencoder learns to disentangle texture from structure for image editing tasks such as texture swapping. Each row shows the result of combining the structure code of the leftmost image with the texture code of the top image.

To reproduce this image (Figure 4) as well as Figures 9 and 12 of the paper, run the following command:

# Reads options from ./experiments/church_pretrained_launcher.py
python -m experiments church_pretrained test swapping_grid

# Reads options from ./experiments/bedroom_pretrained_launcher.py
python -m experiments bedroom_pretrained test swapping_grid

# Reads options from ./experiments/mountain_pretrained_launcher.py
python -m experiments mountain_pretrained test swapping_grid

# Reads options from ./experiments/ffhq512_pretrained_launcher.py
python -m experiments ffhq512_pretrained test swapping_grid

Make sure the dataroot and checkpoints_dir paths are correctly set in the respective ./experiments/xx_pretrained_launcher.py script.

Quantitative Evaluations

To perform quantitative evaluation such as FID in Table 1, Fig 5, and Table 2, we first need to prepare image pairs of input structure and texture references images.

The reference images are randomly selected from the val set of LSUN, FFHQ, and the Waterfalls dataset. The pairs of input structure and texture images should be located at input_structure/ and input_style/ directory, with the same file name. For example, input_structure/001.png and input_style/001.png will be loaded together for swapping.

Replace the path to the test images at dataroot="./testphotos/church/fig5_tab2/" field of the script experiments/church_pretrained_launcher.py, and run

python -m experiments church_pretrained run_test swapping_for_eval
python -m experiments ffhq1024_pretrained run_test swapping_for_eval

The results can be viewed at ./results (that can be changed using --result_dir option).

The FID is then computed between the swapped images and the original structure images, using https://github.com/mseitzer/pytorch-fid.

Model Training.

Datasets

  • LSUN Church and Bedroom datasets can be downloaded here. Once downloaded and unzipped, the directories should contain [category]_[train/val]_lmdb/.
  • FFHQ datasets can be downloaded using this link. This is the zip file of 70,000 images at 1024x1024 resolution. Unzip the files, and we will load the image files directly.
  • The Flickr Mountains dataset and the Flickr Waterfall dataset are not sharable due to license issues. But the images were scraped from Mountains Anywhere and Waterfalls Around the World, using the Python wrapper for the Flickr API. Please contact Taesung Park with title "Flickr Dataset for Swapping Autoencoder" for more details.

Training Scripts

The training configurations are specified using the scripts in experiments/*_launcher.py. Use the following commands to launch various trainings.

# Modify |dataroot| and |checkpoints_dir| at
# experiments/[church,bedroom,ffhq,mountain]_launcher.py
python -m experiments church train church_default
python -m experiments bedroom train bedroom_default
python -m experiments ffhq train ffhq512_default
python -m experiments ffhq train ffhq1024_default

# By default, the script uses GPUtil to look at available GPUs
# on the machine and sets appropriate GPU IDs. To specify specific set of GPUs,
# use the |--gpu| option. Be sure to also change |num_gpus| option in the corresponding script.
python -m experiments church train church_default --gpu 01234567

The training progress can be monitored using visdom at the port number specified by --display_port. The default is https://localhost:2004.

Additionally, a few swapping grids are generated using random samples of the training set. They are saved as webpages at [checkpoints_dir]/[expr_name]/snapshots/. The frequency of the grid generation is controlled using --evaluation_freq.

All configurable parameters are printed at the beginning of training. These configurations are spreaded throughout the codes in def modify_commandline_options of relevant classes, such as models/swapping_autoencoder_model.py, util/iter_counter.py, or models/networks/encoder.py. To change these configuration, simply modify the corresponding option in opt.specify of the training script.

The code for parsing and configurations are at experiments/__init__.py, experiments/__main__.py, experiments/tmux_launcher.py.

Continuing training.

The training continues by default from the last checkpoint, because the --continue_train option is set True by default. To start from scratch, remove the checkpoint, or specify continue_train=False in the training script (e.g. experiments/church_launcher.py).

Code Structure (Main Functions)

  • models/swapping_autoencoder_model.py: The core file that defines losses, produces visuals.
  • optimizers/swapping_autoencoder_optimizer.py: Defines the optimizers and alternating training of GAN.
  • models/networks/: contains the model architectures generator.py, discriminator.py, encoder.py, patch_discrimiantor.py, stylegan2_layers.py.
  • options/__init__.py: contains basic option flags. BUT many important flags are spread out over files, such as swapping_autoencoder_model.py or generator.py. When the program starts, these options are all parsed together. The best way to check the used option list is to run the training script, and look at the console output of the configured options.
  • util/iter_counter.py: contains iteration counting.

Change Log

  • 4/14/2021: The configuration to train the pretrained model on the Mountains dataset had not been set correctly, and was updated accordingly.

Bibtex

If you use this code for your research, please cite our paper:

@inproceedings{park2020swapping,
  title={Swapping Autoencoder for Deep Image Manipulation},
  author={Park, Taesung and Zhu, Jun-Yan and Wang, Oliver and Lu, Jingwan and Shechtman, Eli and Efros, Alexei A. and Zhang, Richard},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}

Acknowledgment

The StyleGAN2 layers heavily borrows (or rather, directly copies!) the PyTorch implementation of @rosinality. We thank Nicholas Kolkin for the helpful discussion on the automated content and style evaluation, Jeongo Seo and Yoseob Kim for advice on the user interface, and William T. Peebles, Tongzhou Wang, and Yu Sun for the discussion on disentanglement.

Owner
Ph.D. student @ UC Berkeley https://taesung.me
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022