Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

Overview

C2-Matching (CVPR2021)

Python 3.7 pytorch 1.4.0

This repository contains the implementation of the following paper:

Robust Reference-based Super-Resolution via C2-Matching
Yuming Jiang, Kelvin C.K. Chan, Xintao Wang, Chen Change Loy, Ziwei Liu
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021

[Paper] [Project Page] [WR-SR Dataset]

Overview

overall_structure

Dependencies and Installation

  • Python >= 3.7
  • PyTorch >= 1.4
  • CUDA 10.0 or CUDA 10.1
  • GCC 5.4.0
  1. Clone Repo

    git clone [email protected]:yumingj/C2-Matching.git
  2. Create Conda Environment

    conda create --name c2_matching python=3.7
    conda activate c2_matching
  3. Install Dependencies

    cd C2-Matching
    conda install pytorch=1.4.0 torchvision cudatoolkit=10.0 -c pytorch
    pip install mmcv==0.4.4
    pip install -r requirements.txt
  4. Install MMSR and DCNv2

    python setup.py develop
    cd mmsr/models/archs/DCNv2
    python setup.py build develop

Dataset Preparation

Please refer to Datasets.md for pre-processing and more details.

Get Started

Pretrained Models

Downloading the pretrained models from this link and put them under experiments/pretrained_models folder.

Test

We provide quick test code with the pretrained model.

  1. Modify the paths to dataset and pretrained model in the following yaml files for configuration.

    ./options/test/test_C2_matching.yml
    ./options/test/test_C2_matching_mse.yml
  2. Run test code for models trained using GAN loss.

    python mmsr/test.py -opt "options/test/test_C2_matching.yml"

    Check out the results in ./results.

  3. Run test code for models trained using only reconstruction loss.

    python mmsr/test.py -opt "options/test/test_C2_matching_mse.yml"

    Check out the results in in ./results

Train

All logging files in the training process, e.g., log message, checkpoints, and snapshots, will be saved to ./experiments and ./tb_logger directory.

  1. Modify the paths to dataset in the following yaml files for configuration.

    ./options/train/stage1_teacher_contras_network.yml
    ./options/train/stage2_student_contras_network.yml
    ./options/train/stage3_restoration_gan.yml
  2. Stage 1: Train teacher contrastive network.

    python mmsr/train.py -opt "options/train/stage1_teacher_contras_network.yml"
  3. Stage 2: Train student contrastive network.

    # add the path to *pretrain_model_teacher* in the following yaml
    # the path to *pretrain_model_teacher* is the model obtained in stage1
    ./options/train/stage2_student_contras_network.yml
    python mmsr/train.py -opt "options/train/stage2_student_contras_network.yml"
  4. Stage 3: Train restoration network.

    # add the path to *pretrain_model_feature_extractor* in the following yaml
    # the path to *pretrain_model_feature_extractor* is the model obtained in stage2
    ./options/train/stage3_restoration_gan.yml
    python mmsr/train.py -opt "options/train/stage3_restoration_gan.yml"
    
    # if you wish to train the restoration network with only mse loss
    # prepare the dataset path and pretrained model path in the following yaml
    ./options/train/stage3_restoration_mse.yml
    python mmsr/train.py -opt "options/train/stage3_restoration_mse.yml"

Visual Results

For more results on the benchmarks, you can directly download our C2-Matching results from here.

result

Webly-Reference SR Dataset

Check out our Webly-Reference (WR-SR) SR Dataset through this link! We also provide the baseline results for a quick comparison in this link.

Webly-Reference SR dataset is a test dataset for evaluating Ref-SR methods. It has the following advantages:

  • Collected in a more realistic way: Reference images are searched using Google Image.
  • More diverse than previous datasets.

result

Citaion

If you find our repo useful for your research, please consider citing our paper:

@InProceedings{jiang2021c2matching,
   author = {Yuming Jiang and Kelvin C.K. Chan and Xintao Wang and Chen Change Loy and Ziwei Liu},
   title = {Robust Reference-based Super-Resolution via C2-Matching},
   booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
   year = {2021}
}

License and Acknowledgement

This project is open sourced under MIT license. The code framework is mainly modified from BasicSR and MMSR (Now reorganized as MMEditing). Please refer to the original repo for more usage and documents.

Contact

If you have any question, please feel free to contact us via [email protected].

Owner
Yuming Jiang
[email protected], Ph.D. Student
Yuming Jiang
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022