AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Overview

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning.

Label prediction on node a by Kipf-GCN and ConfGCN (this paper). L0 is a’s true label. Shade intensity of a node reflects the estimated score of label L1 assigned to that node. Since Kipf-GCN is not capable of estimating influence of one node on another, it is misled by the dominant label L1 in node a’s neighborhood and thereby making the wrong assignment. ConfGCN, on the other hand, estimates confidences (shown by bars) over the label scores, and uses them to increase influence of nodes b and c to estimate the right label on a. Please refer to paper for more details.

Dependencies

  • Compatible with TensorFlow 1.x and Python 3.x.
  • Dependencies can be installed using requirements.txt.

Dataset:

  • We use citation network datasets: Cora, Citeseer, Pubmed, and CoraML for evaluation in our paper.
  • Cora, Citeseer, and Pubmed datasets was taken directly from here. CoraML dataset was taken from here and was placed in the same format as other datasets for semi-supervised settings.
  • data.zip contains all the datasets in the required format.

Evaluate pretrained model:

  • Run setup.sh for setting up the environment and extracting the datasets and pre-trained models.
  • confgcn.py contains TensorFlow (1.x) based implementation of ConfGCN (proposed method).
  • Execute evaluate.sh for evaluating pre-trained ConfGCN model on all four datasets.

Training from scratch:

  • Execute setup.sh for setting up the environment and extracting datasets.

  • config/hyperparams.jsoncontains the best parameters for all four datasets.

  • For training ConfGCN run:

    python conf_gcn.py -data citeseer -name new_run

Citation

Please cite us if you use this code.

@InProceedings{vashishth19a,
  title = 	 {Confidence-based Graph Convolutional Networks for Semi-Supervised Learning},
  author = 	 {Vashishth, Shikhar and Yadav, Prateek and Bhandari, Manik and Talukdar, Partha},
  booktitle = 	 {Proceedings of Machine Learning Research},
  pages = 	 {1792--1801},
  year = 	 {2019},
  editor = 	 {Chaudhuri, Kamalika and Sugiyama, Masashi},
  volume = 	 {89},
  series = 	 {Proceedings of Machine Learning Research},
  address = 	 {},
  month = 	 {16--18 Apr},
  publisher = 	 {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v89/vashishth19a/vashishth19a.pdf},
  url = 	 {http://proceedings.mlr.press/v89/vashishth19a.html}
}

For any clarification, comments, or suggestions please create an issue or contact [email protected].

Owner
MALL Lab (IISc)
MALL Lab (IISc)
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022