Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Overview

Aerial Depth Completion

This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas Teixeira, Martin R. Oswald, Marc Pollefeys, Margarita Chli, published in the IEEE Robotics and Automation Letters (RA-L / ICRA) ETHZ Library link.

Video:

Mesh

Presentation:

Mesh

Citations:

If you use this Code or Aerial Dataset, please cite the following publication:

@article{Teixeira:etal:RAL2020,
    title   = {{Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation}},
    author  = {Lucas Teixeira and Martin R. Oswald and Marc Pollefeys and Margarita Chli},
    journal = {{IEEE} Robotics and Automation Letters ({RA-L})},
    doi     = {10.1109/LRA.2020.2967296},
    year    = {2020}
}

NYUv2, CAB and PVS datasets require further citation from their authors. During our research, we reformat and created ground-truth depth for the CAB and PVS datasets. This code also contains thirt-party networks used for comparison. Please also cite their authors properly in case of use.

Acknowledgment:

The authors thank Fangchang Ma and Abdelrahman Eldesokey for sharing their code that is partially used here. The authors also thanks the owner of the 3D models used to build the dataset. They are identified in each 3D model file.

Data and Simulator

Trained Models

Several trained models are available - here.

Datasets

To be used together by our code, the datasets need to be merged, this means that the content of the train folder of each dataset need to be place in a single train folder. The same happens with the eval folder.

Simulator

The Aerial Dataset was created using this simulator link.

3D Models

Most of the 3D models used to create the dataset can be download here. In the license files contain the authors of the 3D models. Some models were extended with a satellite image from Google Earth.

Running the code

Prerequisites

  • PyTorch 1.0.1
  • Python 3.6
  • Plus dependencies

Testing Example

python3 main.py --evaluate "/media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar" --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12"

Training Example

python3 main.py --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12" --workers 8 -lr 0.00001 --batch-size 1 --dcnet-arch gudepthcompnet18 --training-mode dc1_only --criterion l2
python3 main.py --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12" --workers 8 --criterion l2 --training-mode dc0-cf1-ln1 --dcnet-arch ged_depthcompnet --dcnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:dc_weights --confnet-arch cbr3-c1 --confnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:conf_weights --lossnet-arch ged_depthcompnet --lossnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:lossdc_weights

Parameters

Parameter Description
--help show this help message and exit
--output NAME output base name in the subfolder results
--training-mode ARCH this variable indicating the training mode. Our framework has up to tree parts the dc (depth completion net), the cf (confidence estimation net) and the ln (loss net). The number 0 or 1 indicates whether the network should be updated during the back-propagation. All the networks can be pre-load using other parameters. training_mode: dc1_only ; dc1-ln0 ; dc1-ln1 ; dc0-cf1-ln0 ; dc1-cf1-ln0 ; dc0-cf1-ln1 ; dc1-cf1-ln1 (default: dc1_only)
--dcnet-arch ARCH model architecture: resnet18 ; udepthcompnet18 ; gms_depthcompnet ; ged_depthcompnet ; gudepthcompnet18 (default: resnet18)
--dcnet-pretrained PATH path to pretraining checkpoint for the dc net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--dcnet-modality MODALITY modality: rgb ; rgbd ; rgbdw (default: rgbd)
--confnet-arch ARCH model architecture: cbr3-c1 ; cbr3-cbr1-c1 ; cbr3-cbr1-c1res ; join ; none (default: cbr3-c1)
--confnet-pretrained PATH path to pretraining checkpoint for the cf net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--lossnet-arch ARCH model architecture: resnet18 ; udepthcompnet18 (uresnet18) ; gms_depthcompnet (nconv-ms) ; ged_depthcompnet (nconv-ed) ; gudepthcompnet18 (nconv-uresnet18) (default: ged_depthcompnet)
--lossnet-pretrained PATH path to pretraining checkpoint for the ln net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--data-type DATA dataset: visim ; kitti (default: visim)
--data-path PATH path to data folder - this folder has to have inside a val folder and a train folder if it is not in evaluation mode.
--data-modality MODALITY this field define the input modality in the format colour-depth-weight. kfd and fd mean random sampling in the ground-truth. kgt means keypoints from slam with depth from ground-truth. kor means keypoints from SLAM with depth from the landmark. The weight can be binary (bin) or from the uncertanty from slam (kw). The parameter can be one of the following: rgb-fd-bin ; rgb-kfd-bin ; rgb-kgt-bin ; rgb-kor-bin ; rgb-kor-kw (default: rgb-fd-bin)
--workers N number of data loading workers (default: 10)
--epochs N number of total epochs to run (default: 15)
--max-gt-depth D cut-off depth of ground truth, negative values means infinity (default: inf [m])
--min-depth D cut-off depth of sparsifier (default: 0 [m])
--max-depth D cut-off depth of sparsifier, negative values means infinity (default: inf [m])
--divider D Normalization factor - zero means per frame (default: 0 [m])
--num-samples N number of sparse depth samples (default: 500)
--sparsifier SPARSIFIER sparsifier: uar ; sim_stereo (default: uar)
--criterion LOSS loss function: l1 ; l2 ; il1 (inverted L1) ; absrel (default: l1)
--optimizer OPTIMIZER Optimizer: sgd ; adam (default: adam)
--batch-size BATCH_SIZE mini-batch size (default: 8)
--learning-rate LR initial learning rate (default 0.001)
--learning-rate-step LRS number of epochs between reduce the learning rate by 10 (default: 5)
--learning-rate-multiplicator LRM multiplicator (default 0.1)
--momentum M momentum (default: 0)
--weight-decay W weight decay (default: 0)
--val-images N number of images in the validation image (default: 10)
--print-freq N print frequency (default: 10)
--resume PATH path to latest checkpoint (default: empty)
--evaluate PATH evaluates the model on validation set, all the training parameters will be ignored, but the input parameters still matters (default: empty)
--precision-recall enables the calculation of precision recall table, might be necessary to ajust the bin and top values in the ConfidencePixelwiseThrAverageMeter class. The result table shows for each confidence threshold the error and the density (default:false)
--confidence-threshold VALUE confidence threshold , the best way to select this number is create the precision-recall table. (default: 0)

Contact

In case of any issue, fell free to contact me via email lteixeira at mavt.ethz.ch.

Owner
ETHZ V4RL
Vision for Robotics Lab, ETH Zurich
ETHZ V4RL
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022