Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Overview

Aerial Depth Completion

This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas Teixeira, Martin R. Oswald, Marc Pollefeys, Margarita Chli, published in the IEEE Robotics and Automation Letters (RA-L / ICRA) ETHZ Library link.

Video:

Mesh

Presentation:

Mesh

Citations:

If you use this Code or Aerial Dataset, please cite the following publication:

@article{Teixeira:etal:RAL2020,
    title   = {{Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation}},
    author  = {Lucas Teixeira and Martin R. Oswald and Marc Pollefeys and Margarita Chli},
    journal = {{IEEE} Robotics and Automation Letters ({RA-L})},
    doi     = {10.1109/LRA.2020.2967296},
    year    = {2020}
}

NYUv2, CAB and PVS datasets require further citation from their authors. During our research, we reformat and created ground-truth depth for the CAB and PVS datasets. This code also contains thirt-party networks used for comparison. Please also cite their authors properly in case of use.

Acknowledgment:

The authors thank Fangchang Ma and Abdelrahman Eldesokey for sharing their code that is partially used here. The authors also thanks the owner of the 3D models used to build the dataset. They are identified in each 3D model file.

Data and Simulator

Trained Models

Several trained models are available - here.

Datasets

To be used together by our code, the datasets need to be merged, this means that the content of the train folder of each dataset need to be place in a single train folder. The same happens with the eval folder.

Simulator

The Aerial Dataset was created using this simulator link.

3D Models

Most of the 3D models used to create the dataset can be download here. In the license files contain the authors of the 3D models. Some models were extended with a satellite image from Google Earth.

Running the code

Prerequisites

  • PyTorch 1.0.1
  • Python 3.6
  • Plus dependencies

Testing Example

python3 main.py --evaluate "/media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar" --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12"

Training Example

python3 main.py --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12" --workers 8 -lr 0.00001 --batch-size 1 --dcnet-arch gudepthcompnet18 --training-mode dc1_only --criterion l2
python3 main.py --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12" --workers 8 --criterion l2 --training-mode dc0-cf1-ln1 --dcnet-arch ged_depthcompnet --dcnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:dc_weights --confnet-arch cbr3-c1 --confnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:conf_weights --lossnet-arch ged_depthcompnet --lossnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:lossdc_weights

Parameters

Parameter Description
--help show this help message and exit
--output NAME output base name in the subfolder results
--training-mode ARCH this variable indicating the training mode. Our framework has up to tree parts the dc (depth completion net), the cf (confidence estimation net) and the ln (loss net). The number 0 or 1 indicates whether the network should be updated during the back-propagation. All the networks can be pre-load using other parameters. training_mode: dc1_only ; dc1-ln0 ; dc1-ln1 ; dc0-cf1-ln0 ; dc1-cf1-ln0 ; dc0-cf1-ln1 ; dc1-cf1-ln1 (default: dc1_only)
--dcnet-arch ARCH model architecture: resnet18 ; udepthcompnet18 ; gms_depthcompnet ; ged_depthcompnet ; gudepthcompnet18 (default: resnet18)
--dcnet-pretrained PATH path to pretraining checkpoint for the dc net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--dcnet-modality MODALITY modality: rgb ; rgbd ; rgbdw (default: rgbd)
--confnet-arch ARCH model architecture: cbr3-c1 ; cbr3-cbr1-c1 ; cbr3-cbr1-c1res ; join ; none (default: cbr3-c1)
--confnet-pretrained PATH path to pretraining checkpoint for the cf net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--lossnet-arch ARCH model architecture: resnet18 ; udepthcompnet18 (uresnet18) ; gms_depthcompnet (nconv-ms) ; ged_depthcompnet (nconv-ed) ; gudepthcompnet18 (nconv-uresnet18) (default: ged_depthcompnet)
--lossnet-pretrained PATH path to pretraining checkpoint for the ln net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--data-type DATA dataset: visim ; kitti (default: visim)
--data-path PATH path to data folder - this folder has to have inside a val folder and a train folder if it is not in evaluation mode.
--data-modality MODALITY this field define the input modality in the format colour-depth-weight. kfd and fd mean random sampling in the ground-truth. kgt means keypoints from slam with depth from ground-truth. kor means keypoints from SLAM with depth from the landmark. The weight can be binary (bin) or from the uncertanty from slam (kw). The parameter can be one of the following: rgb-fd-bin ; rgb-kfd-bin ; rgb-kgt-bin ; rgb-kor-bin ; rgb-kor-kw (default: rgb-fd-bin)
--workers N number of data loading workers (default: 10)
--epochs N number of total epochs to run (default: 15)
--max-gt-depth D cut-off depth of ground truth, negative values means infinity (default: inf [m])
--min-depth D cut-off depth of sparsifier (default: 0 [m])
--max-depth D cut-off depth of sparsifier, negative values means infinity (default: inf [m])
--divider D Normalization factor - zero means per frame (default: 0 [m])
--num-samples N number of sparse depth samples (default: 500)
--sparsifier SPARSIFIER sparsifier: uar ; sim_stereo (default: uar)
--criterion LOSS loss function: l1 ; l2 ; il1 (inverted L1) ; absrel (default: l1)
--optimizer OPTIMIZER Optimizer: sgd ; adam (default: adam)
--batch-size BATCH_SIZE mini-batch size (default: 8)
--learning-rate LR initial learning rate (default 0.001)
--learning-rate-step LRS number of epochs between reduce the learning rate by 10 (default: 5)
--learning-rate-multiplicator LRM multiplicator (default 0.1)
--momentum M momentum (default: 0)
--weight-decay W weight decay (default: 0)
--val-images N number of images in the validation image (default: 10)
--print-freq N print frequency (default: 10)
--resume PATH path to latest checkpoint (default: empty)
--evaluate PATH evaluates the model on validation set, all the training parameters will be ignored, but the input parameters still matters (default: empty)
--precision-recall enables the calculation of precision recall table, might be necessary to ajust the bin and top values in the ConfidencePixelwiseThrAverageMeter class. The result table shows for each confidence threshold the error and the density (default:false)
--confidence-threshold VALUE confidence threshold , the best way to select this number is create the precision-recall table. (default: 0)

Contact

In case of any issue, fell free to contact me via email lteixeira at mavt.ethz.ch.

Owner
ETHZ V4RL
Vision for Robotics Lab, ETH Zurich
ETHZ V4RL
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022