Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Related tags

Deep LearningRPS_LJE
Overview

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models

This repository is the official implementation of Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021. (will update the link)

Introduction

We propose a novel sample-based explanation method for classifiers with a novel derivation of representer point with Taylor Expansion on the Jacobian matrix.

If you would like to cite this work, a sample bibtex citation is as following:

@inproceedings{yi2021representer,
 author = {Yi Sui, Ga Wu, Scott Sanner},
 booktitle = {Advances in Neural Information Processing Systems},
 title = {Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models},
 year = {2021}
}

Set up

To install requirements:

pip install -r requirements.txt

Change the root path in config.py to the path to the project

project_root = #your path here

Download the pre-trained models and calculated weights here

  • Dowload and unzip the saved_models_MODEL_NAME
  • Put the content into the corresponding folders ("models/ MODEL_NAME /saved_models")

Training

In our paper, we run experiment with three tasks

  • CIFAR image classification with ResNet-20 (CNN)
  • IMDB sentiment classification with Bi-LSTM (RNN)
  • German credit analysis with XGBoost (Xgboost)

The models are implemented in the models directory with pre-trained weights under "models/ MODEL_NAME /saved_models/base" : ResNet (CNN), Bi-LSTM (RNN), and XGBoost.

To train theses model(s) in the paper, run the following commands:

python models/CNN/train.py --lr 0.01 --epochs 10 --saved_path saved_models/base
python models/RNN/train.py --lr 1e-3 --epochs 10 --saved_path saved_models/base --use_pretrained True
python models/Xgboost/train.py

Caculate weights

We implemented three different explainers: RPS-LJE, RPS-l2 (modified from official repository of RPS-l2), and Influence Function. To calculate the importance weights, run the following commands:

python explainer/calculate_ours_weights.py --model CNN --lr 0.01
python explainer/calculate_representer_weights.py --model RNN --lmbd 0.003 --epoch 3000
python explainer/calculate_influence.py --model Xgboost

Experiments

Dataset debugging experiment

To run the dataset debugging experiments, run the following commands:

python dataset_debugging/experiment_dataset_debugging_cnn.py --num_of_run 10 --flip_portion 0.2 --path ../models/CNN/saved_models/experiment_dataset_debugging --lr 1e-5
python dataset_debugging/experiment_dataset_debugging_cnn.py --num_of_run 10 --flip_portion 0.2 --path ../models/CNN/saved_models/experiment_dataset_debugging_fix_random_split --lr 1e-5 --seed 11

python dataset_debugging/experiment_dataset_debugging_rnn.py --num_of_run 10 --flip_portion 0.2 --path ../models/RNN/saved_models/experiment_dataset_debugging --lr 1e-5

python dataset_debugging/experiment_dataset_debugging_Xgboost.py --num_of_run 10 --flip_portion 0.3 --path ../models/Xgboost/saved_models/experiment_dataset_debugging --lr 1e-5

The trained models, intermediate outputs, explainer weights, and accuracies at each checkpoint are stored under the specified paths "models/MODEL_NAME/saved_models/experiment_dataset_debugging". To visualize the results, run the notebooks plot_res_cnn.ipynb, plot_res_cnn_fixed_random_split.ipynb, plot_res_rnn.ipynb, plot_res_xgboost.ipynb. The results are saved under folder dataset_debugging/figs.

Other experiments

All remaining experiments are in Jupyter-notebooks organized under "models/ MODEL_NAME /experiments" : ResNet (CNN), Bi-LSTM (RNN), and XGBoost.

A comparison of explanation provided by Influence Function, RPS-l2, and RPS-LJE. Explanation for Image Classification

Owner
Yi(Amy) Sui
Yi(Amy) Sui
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022