Dynamic Slimmable Network (CVPR 2021, Oral)

Overview

Dynamic Slimmable Network (DS-Net)

This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral).

image

Architecture of DS-Net. The width of each supernet stage is adjusted adaptively by the slimming ratio ρ predicted by the gate.

image

Accuracy vs. complexity on ImageNet.

Usage

1. Requirements

2. Stage I: Supernet Training

For example, train dynamic slimmable MobileNet supernet with 8 GPUs (takes about 2 days):

python -m torch.distributed.launch --nproc_per_node=8 train.py /PATH/TO/ImageNet -c ./configs/mobilenetv1_bn_uniform.yml

3. Stage II: Gate Training

  • Will be available soon

Citation

If you use our code for your paper, please cite:

@inproceedings{li2021dynamic,
  author = {Changlin Li and
            Guangrun Wang and
            Bing Wang and
            Xiaodan Liang and
            Zhihui Li and
            Xiaojun Chang},
  title = {Dynamic Slimmable Network},
  booktitle = {CVPR},
  year = {2021}
}
Comments
  • The usage of gumbel softmax in DS-Net

    The usage of gumbel softmax in DS-Net

    Thank you for your very nice work,I want to know that the effect of gumble softmax,because I think the network can be trained without gumble softmax. Is the gumbel softmax just aimed to increase the randomness of channel choice?

    discussion 
    opened by LinyeLi60 7
  • UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.

    UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.

    Why I get an warning: /home/chauncey/.local/lib/python3.8/site-packages/torchvision/transforms/functional.py:364: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum. warnings.warn( when I use python3 -m torch.distributed.launch --nproc_per_node=1 train.py ./imagenet -c ./configs/mobilenetv1_bn_uniform.yml

    opened by Chauncey-Wang 3
  • Question about calculating MAdds of dynamic network in the paper

    Question about calculating MAdds of dynamic network in the paper

    Thank you for your great work, and I have a question about how to calculate MAdds in your paper. The dynamic network has different widths and MAdds for each instance, but you denoted MAdds for your networks. Are they the average MAdds for the whole dataset?

    discussion 
    opened by sseung0703 3
  • why not set ensemble_ib to True?

    why not set ensemble_ib to True?

    Hi,

    I found that ensemble_ib is set to False for both slim training and gate training from the configs, but from paper it would boost the performance when set toTrue.

    Any idea?

    opened by twmht 2
  • MAdds of Pretrained Supernet

    MAdds of Pretrained Supernet

    Hi Changlin, your work is excellent. I have a question about the calculation of MAdds, in README.md the MAdds of Subnetwork 13 is 565M, but I think the MAdds of Subnetwork 13 should be 821M observed in my experiments, because the channel number of Subnetwork 13 is larger than the original MobileNetV1, and the original MobileNetV1 1.0's MAdds should be 565M. Looking forward to your reply.

    opened by LinyeLi60 2
  • Error of change the num_choice in mobilenetv1_bn_uniform_reset_bn.yml

    Error of change the num_choice in mobilenetv1_bn_uniform_reset_bn.yml

    I follow your suggestion to set the num_choice in mobilenetv1_bn_uniform_reset_bn.yml to 14, but get an expected error when I use python -m torch.distributed.launch --nproc_per_node=8 train.py /PATH/TO/ImageNet -c ./configs/mobilenetv1_bn_uniform_reset_bn.yml.

    08/25 10:15:57 AM Recalibrating BatchNorm statistics... 08/25 10:16:10 AM Finish recalibrating BatchNorm statistics. 08/25 10:16:19 AM Finish recalibrating BatchNorm statistics. 08/25 10:16:21 AM Test: [ 0/0] Mode: 0 Time: 0.344 (0.344) Loss: 6.9204 (6.9204) [email protected]: 0.0000 ( 0.0000) [email protected]: 0.0000 ( 0.0000) Flops: 132890408 (132890408) 08/25 10:16:22 AM Test: [ 0/0] Mode: 1 Time: 0.406 (0.406) Loss: 6.9189 (6.9189) [email protected]: 0.0000 ( 0.0000) [email protected]: 0.0000 ( 0.0000) Flops: 152917440 (152917440) 08/25 10:16:22 AM Test: [ 0/0] Mode: 2 Time: 0.381 (0.381) Loss: 6.9187 (6.9187) [email protected]: 0.0000 ( 0.0000) [email protected]: 0.0000 ( 0.0000) Flops: 175152224 (175152224) 08/25 10:16:23 AM Test: [ 0/0] Mode: 3 Time: 0.389 (0.389) Loss: 6.9134 (6.9134) [email protected]: 0.0000 ( 0.0000) [email protected]: 0.0000 ( 0.0000) Flops: 199594752 (199594752) Traceback (most recent call last): File "train.py", line 658, in main() File "train.py", line 635, in main eval_metrics.append(validate_slim(model, File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/apis/train_slim.py", line 215, in validate_slim output = model(input) File "/home/chauncey/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_net.py", line 191, in forward x = self.forward_features(x) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_net.py", line 178, in forward_features x = stage(x) File "/home/chauncey/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_stages.py", line 48, in forward x = self.first_block(x) File "/home/chauncey/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_blocks.py", line 240, in forward x = self.conv_pw(x) File "/home/chauncey/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_ops.py", line 94, in forward self.running_outc = self.out_channels_list[self.channel_choice] IndexError: list index out of range

    It looks like we should make some adjustment in other py files.

    opened by chaunceywx 2
  • Why the num_choice in different yml is different?

    Why the num_choice in different yml is different?

    Why you set num_choice in mobilenetv1_bn_uniform_reset_bn.yml as 4, but set this parameter as 14 in the other two yml file?

    老哥,如果你也是中国人,咱们还是用中文交流吧,我英语水平比较感人。。。

    opened by chaunceywx 2
  • 运行问题

    运行问题

    请问大佬下面这个问题是为什么 Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.


    /root/anaconda3/envs/0108/lib/python3.6/site-packages/torchvision/io/image.py:11: UserWarning: Failed to load image Python extension: /root/anaconda3/envs/0108/lib/python3.6/site-packages/torchvision/image.so: undefined symbol: _ZNK3c106IValue23reportToTensorTypeErrorEv warn(f"Failed to load image Python extension: {e}") /root/anaconda3/envs/0108/lib/python3.6/site-packages/torchvision/io/image.py:11: UserWarning: Failed to load image Python extension: /root/anaconda3/envs/0108/lib/python3.6/site-packages/torchvision/image.so: undefined symbol: _ZNK3c106IValue23reportToTensorTypeErrorEv warn(f"Failed to load image Python extension: {e}") 01/21 05:42:18 AM Added key: store_based_barrier_key:1 to store for rank: 1 01/21 05:42:18 AM Added key: store_based_barrier_key:1 to store for rank: 0 01/21 05:42:18 AM Training in distributed mode with multiple processes, 1 GPU per process. Process 0, total 2. 01/21 05:42:18 AM Training in distributed mode with multiple processes, 1 GPU per process. Process 1, total 2. 01/21 05:42:20 AM Model slimmable_mbnet_v1_bn_uniform created, param count: 7676204 01/21 05:42:20 AM Data processing configuration for current model + dataset: 01/21 05:42:20 AM input_size: (3, 224, 224) 01/21 05:42:20 AM interpolation: bicubic 01/21 05:42:20 AM mean: (0.485, 0.456, 0.406) 01/21 05:42:20 AM std: (0.229, 0.224, 0.225) 01/21 05:42:20 AM crop_pct: 0.875 01/21 05:42:20 AM NVIDIA APEX not installed. AMP off. 01/21 05:42:21 AM Using torch DistributedDataParallel. Install NVIDIA Apex for Apex DDP. 01/21 05:42:21 AM Scheduled epochs: 40 01/21 05:42:21 AM Training folder does not exist at: images/train 01/21 05:42:21 AM Training folder does not exist at: images/train Killing subprocess 239 Killing subprocess 240 Traceback (most recent call last): File "/root/anaconda3/envs/0108/lib/python3.6/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/root/anaconda3/envs/0108/lib/python3.6/runpy.py", line 85, in _run_code exec(code, run_globals) File "/root/anaconda3/envs/0108/lib/python3.6/site-packages/torch/distributed/launch.py", line 340, in main() File "/root/anaconda3/envs/0108/lib/python3.6/site-packages/torch/distributed/launch.py", line 326, in main sigkill_handler(signal.SIGTERM, None) # not coming back File "/root/anaconda3/envs/0108/lib/python3.6/site-packages/torch/distributed/launch.py", line 301, in sigkill_handler raise subprocess.CalledProcessError(returncode=last_return_code, cmd=cmd) subprocess.CalledProcessError: Command '['/root/anaconda3/envs/0108/bin/python', '-u', 'train.py', '--local_rank=1', 'images', '-c', './configs/mobilenetv1_bn_uniform_reset_bn.yml']' returned non-zero exit status 1.

    opened by 6imust 1
  • project environment

    project environment

    Hi,could you provide the environment for the project?I try to train the network with python=3.8 pytorch=1.7.1,cuda=10.2.Shortly after starting training,there's a RuntimeError: CUDA error: device-side assert triggered happened,and some other environment also lead to this error.I'm not sure whether the problem is caused by the difference of environment.

    opened by singularity97 1
  • Softmax twice for SGS loss?

    Softmax twice for SGS loss?

    Dear authors, thanks for this nice work.

    I wonder why the calculation of the SGS loss is using the softmaxed data rather than the logits, considering the PyTorch CrossEntropyLoss already contains a softmax inside.

    https://github.com/changlin31/DS-Net/blob/15cd3036970ec27d2c306014344fd50d9e9b888b/dyn_slim/apis/train_slim_gate.py#L98 https://github.com/changlin31/DS-Net/blob/15cd3036970ec27d2c306014344fd50d9e9b888b/dyn_slim/models/dyn_slim_blocks.py#L324-L355

    opened by Yu-Zhewen 0
  • Can we futher improve autoalim without gate?

    Can we futher improve autoalim without gate?

    It is not easy to deploy gate operator with some other backends, like TensorRT.

    So my question is can we futher improve autoalim without the dynamic gate when inference?Any ongoing work are doing this?

    opened by twmht 3
  • DS-Net for object detection

    DS-Net for object detection

    Hello. Thanks for your work. I noticed that you also conducted some experiments in object detection. I wonder whether or when you will release the code

    opened by NoLookDefense 8
  • Dynamic path for DS-mobilenet

    Dynamic path for DS-mobilenet

    Hi. Thanks for your work. I am reading your paper and trying to reimplement, and I feel confused about some details. You mentioned in your paper that the slimming ratio ρ∈[0.35 : 0.05 : 1.25], which have 18 paths. However, in your code, there are only 14 paths ρ∈[0.35 : 0.05 : 1] as mentioned in https://github.com/changlin31/DS-Net/blob/15cd3036970ec27d2c306014344fd50d9e9b888b/dyn_slim/models/dyn_slim_net.py#L36 . And also, when conducting gate training, the gate function only has a 4-dimension output, meaning that there is only 4 paths and the slimming ratio is restricted to ρ∈[0.35 : 0.05 : 0.5]. https://github.com/changlin31/DS-Net/blob/15cd3036970ec27d2c306014344fd50d9e9b888b/dyn_slim/models/dyn_slim_blocks.py#L204 Why the dynamic path for larger network is not used?

    opened by NoLookDefense 1
Releases(v0.0.1)
  • v0.0.1(Nov 30, 2021)

    Pretrained weights of DS-MBNet supernet. Detailed accuracy of each sub-networks:

    | Subnetwork | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | ----------------- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | MAdds | 133M | 153M | 175M | 200M | 226M | 255M | 286M | 319M | 355M | 393M | 433M | 475M | 519M | 565M | | Top-1 (%) | 70.1 | 70.4 | 70.8 | 71.2 | 71.6 | 72.0 | 72.4 | 72.7 | 73.0 | 73.3 | 73.6 | 73.9 | 74.1 | 74.6 | | Top-5 (%) | 89.4 | 89.6 | 89.9 | 90.2 | 90.3 | 90.6 | 90.9 | 91.0 | 91.2 | 91.4 | 91.5 | 91.7 | 91.8 | 92.0 |

    Source code(tar.gz)
    Source code(zip)
    DS_MBNet-70_1.pth.tar(60.93 MB)
    log-DS_MBNet-70_1.txt(6.12 KB)
Owner
Changlin Li
Changlin Li
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022