Deep motion transfer

Overview

animation-with-keypoint-mask

Paper

The right most square is the final result. Softmax mask (circles):


\

Heatmap mask:



\

conda env create -f environment.yml
conda activate venv11
We use pytorch 1.7.1 with python 3.8.
Please obtain pretrained keypoint module. You can do so by
git checkout fomm-new-torch
Then, follow the instructions from the README of that branch, or obtain a pre-trained checkpoint from
https://github.com/AliaksandrSiarohin/first-order-model

training

to train a model on specific dataset run:

CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py --config config/dataset_name.yaml --device_ids 0,1,2,3 --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

E.g. taichi-256-q.yaml for the keypoint heatmap mask model, and taichi-256-softmax-q.yaml for drawn circular keypoints instead.

the code will create a folder in the log directory (each run will create a time-stamped new directory). checkpoints will be saved to this folder. to check the loss values during training see log.txt. you can also check training data reconstructions in the train-vis sub-folder. by default the batch size is tuned to run on 4 titan-x gpu (apart from speed it does not make much difference). You can change the batch size in the train_params in corresponding .yaml file.

evaluation on video reconstruction

To evaluate the reconstruction of the driving video from its first frame, run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode reconstruction --checkpoint path/to/checkpoint --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

you will need to specify the path to the checkpoint, the reconstruction sub-folder will be created in the checkpoint folder. the generated video will be stored to this folder, also generated videos will be stored in png subfolder in loss-less '.png' format for evaluation. instructions for computing metrics from the paper can be found: https://github.com/aliaksandrsiarohin/pose-evaluation.

image animation

In order to animate a source image with motion from driving, run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode animate --checkpoint path/to/checkpoint --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

you will need to specify the path to the checkpoint, the animation sub-folder will be created in the same folder as the checkpoint. you can find the generated video there and its loss-less version in the png sub-folder. by default video from test set will be randomly paired, but you can specify the "source,driving" pairs in the corresponding .csv files. the path to this file should be specified in corresponding .yaml file in pairs_list setting.

datasets

  1. taichi. follow the instructions in data/taichi-loading or instructions from https://github.com/aliaksandrsiarohin/video-preprocessing.

training on your own dataset

  1. resize all the videos to the same size e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images. we recommend the later, for each video make a separate folder with all the frames in '.png' format. this format is loss-less, and it has better i/o performance.

  2. create a folder data/dataset_name with 2 sub-folders train and test, put training videos in the train and testing in the test.

  3. create a config config/dataset_name.yaml, in dataset_params specify the root dir the root_dir: data/dataset_name. also adjust the number of epoch in train_params.

additional notes

citation:

@misc{toledano2021,
  author = {Or Toledano and Yanir Marmor and Dov Gertz},
  title = {Image Animation with Keypoint Mask},
  year = {2021},
  eprint={2112.10457},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Old format (before paper):

@misc{toledano2021,
  author = {Or Toledano and Yanir Marmor and Dov Gertz},
  title = {Image Animation with Keypoint Mask},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/or-toledano/animation-with-keypoint-mask}},
  commit = {015b1f2d466658141c41ea67d7356790b5cded40}
}
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022