Fastshap: A fast, approximate shap kernel

Related tags

Deep Learningfastshap
Overview

fastshap: A fast, approximate shap kernel

fastshap was designed to be:

  • Fast Calculating shap values can take an extremely long time. fastshap utilizes inner and outer batch assignments to keep the calculations inside vectorized operations as often as it can.
  • Used on Tabular Data Can accept numpy arrays or pandas DataFrames, and can handle categorical variables natively. As of right now, only 1 dimensional outputs are accepted.

WARNING This package specifically offers a kernel explainer, which can calculate approximate shap values of f(X) towards y for any function f. Much faster shap solutions are available specifically for gradient boosted trees.

Installation

This package can be installed using either pip or conda, through conda-forge:

# Using pip
$ pip install fastshap --no-cache-dir

You can also download the latest development version from this repository. If you want to install from github with conda, you must first run conda install pip git.

$ pip install git+https://github.com/AnotherSamWilson/fastshap.git

Basic Usage

We will use the iris dataset for this example. Here, we load the data and train a simple lightgbm model on the dataset:

from sklearn.datasets import load_iris
import pandas as pd
import lightgbm as lgb
import numpy as np

# Define our dataset and target variable
data = pd.concat(load_iris(as_frame=True,return_X_y=True),axis=1)
data.rename({"target": "species"}, inplace=True, axis=1)
data["species"] = data["species"].astype("category")
target = data.pop("sepal length (cm)")

# Train our model
dtrain = lgb.Dataset(data=data, label=target)
lgbmodel = lgb.train(
    params={"seed": 1, "verbose": -1},
    train_set=dtrain,
    num_boost_round=10
)

# Define the function we wish to build shap values for.
model = lgbmodel.predict

preds = model(data)

We now have a model which takes a Pandas dataframe, and returns predictions. We can create an explainer that will use data as a background dataset to calculate the shap values of any dataset we wish:

import fastshap

ke = fastshap.KernelExplainer(model, data)
sv = ke.calculate_shap_values(data, verbose=False)

print(all(preds == sv.sum(1)))
## True

Stratifying the Background Set

We can select a subset of our data to act as a background set. By stratifying the background set on the results of the model output, we will usually get very similar results, while decreasing the caculation time drastically.

ke.stratify_background_set(5)
sv2 = ke.calculate_shap_values(
  data, 
  background_fold_to_use=0,
  verbose=False
)

print(np.abs(sv2 - sv).mean(0))
## [1.74764532e-03 1.61829094e-02 1.99534408e-03 4.02640884e-16
##  1.71084747e-02]

What we did is break up our background set into 10 different sets, stratified by the model output. We then used the first of these sets as our background set. We then compared the average difference between these shap values, and the shap values we obtained from using the entire dataset.

Choosing Batch Sizes

If the entire process was vectorized, it would require an array of size (# Samples * # Coalitions * # Background samples, # Columns). Where # Coalitions is the sum of the total number of coalitions that are going to be run. Even for small datasets, this becomes enormous. fastshap breaks this array up into chunks by splitting the process into a series of batches.

This is a list of the large arrays and their maximum size:

  • Global
    • Mask Matrix (# Coalitions, # Columns) dtype = int8
  • Outer Batch
    • Linear Targets (Total Coalition Combinations, Outer Batch Size) dtype = adaptive
  • Inner Batch
    • Model Evaluation Features (Inner Batch Size, # background samples) dtype = adaptive

The adaptive datatypes of the arrays above will be matched to the data types of the model output. Therefore, if your model returns float32, these arrays will be stored as float32. The final, returned shap values will also be returned as the datatype returned by the model.

These theoretical sizes can be calculated directly so that the user can determine appropriate batch sizes for their machine:

# Combines our background data back into 1 DataFrame
ke.stratify_background_set(1)
(
    mask_matrix_size, 
    linear_target_size, 
    inner_model_eval_set_size
) = ke.get_theoretical_array_expansion_sizes(
    outer_batch_size=150,
    inner_batch_size=150,
    n_coalition_sizes=3,
    background_fold_to_use=None,
)

print(
  np.product(linear_target_size) + np.product(inner_model_eval_set_size)
)
## 92100

For the iris dataset, even if we sent the entire set (150 rows) through as one batch, we only need 92100 elements stored in arrays. This is manageable on most machines. However, this number grows extremely quickly with the samples and number of columns. It is highly advised to determine a good batch scheme before running this process.

Specifying a Custom Linear Model

Any linear model available from sklearn.linear_model can be used to calculate the shap values. If you wish for some sparsity in the shap values, you can use Lasso regression:

from sklearn.linear_model import Lasso

# Use our entire background set
ke.stratify_background_set(1)
sv_lasso = ke.calculate_shap_values(
  data, 
  background_fold_to_use=0,
  linear_model=Lasso(alpha=0.1),
  verbose=False
)

print(sv_lasso[0,:])
## [-0.         -0.33797832 -0.         -0.14634971  5.84333333]

The default model used is sklearn.linear_model.LinearRegression.

Owner
Samuel Wilson
Samuel Wilson
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022