An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

Overview

OptiCL

OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in which a practitioner wishes to optimize decisions according to some objective and constraints, but that we have no known functions relating our decisions to the outcomes of interest. We propose to learn predictive models for these outcomes using machine learning, and to subsequently optimize decisions by embedding the learned models in a larger MIO formulation.

The framework and full methodology are detailed in our manuscript, Mixed-Integer Optimization with Constraint Learning.

How to use OptiCL

You can install the OptiCL package locally by cloning the repository and running pip install . within the home directory of the repo. This will allow you to load opticl in Python; see the example notebooks for specific usage of the functions.

The OptiCL pipeline

Our pipeline requires two inputs from a user:

  • Training data, with features classified as contextual variables, decisions, and outcomes.
  • An initial conceptual model, which is defined by specifying the decision variables and any domain-driven fixed constraints or deterministic objective terms.

Given these inputs, we implement a pipeline that:

  1. Learns predictive models for the outcomes of interest by using a moel training and selection pipeline with cross-validation.
  2. Efficiently charactertizes the feasible decision space, or "trust region," using the convex hull of the observed data.
  3. Embeds the learned models and trust region into a MIO formulation, which can then be solved using a Pyomo-supported MIO solver (e.g., Gurobi).

OptiCL requires no manual specification of a trained ML model, although the end-user can optionally restrict to a subset of model types to be considered in the selection pipeline. Furthermore, we expose the underlying trained models within the pipeline, providing transparency and allowing for the predictive models to be externally evaluated.

Examples

We illustrate the full OptiCL pipeline in three notebooks:

  • A case study on food basket optimization for the World Food Programme (notebooks/WFP/The Palatable Diet Problem.ipynb): This notebook presents a simplified version of the case study in the manuscript. It shows how to train and select models for a single learned outcome, define a conceptual model with a known objective and constraints, and solve the MIO with an additional learned constraint.
  • A general pipeline overview (notebooks/Pipeline/Model_embedding.ipynb): This notebook demonstrates the general features of the pipleine, including the procedure for training and embedding models for multiple outcomes, the specification of each outcome as either a constraint or objective term, and the incorporation of contextual features and domain-driven constraints.
  • Model verification (notebooks/Pipeline/Model_Verification_Regression.ipynb, notebooks/Pipeline/Model_Verification_Classification.ipynb): These notebooks shows the training and embedding of a single model and compares the sklearn predictions to the MIO predictions to verify the MIO embeddings. The classification notebook also provides details on how we linearize constraints for the binary classification setting.

The package currently fully supports model training and embedding for continuous outcomes across all ML methods, as demonstrated in the example notebooks. Binary classification is fully supported for learned constraints. Multi-class classification support is in development.

Citation

Our software can be cited as:

  @misc{OptiCL,
    author = "Donato Maragno and Holly Wiberg",
    title = "OptiCL: Mixed-integer optimization with constraint learning",
    year = 2021,
    url = "https://github.com/hwiberg/OptiCL/"
  }

Get in touch!

Our package is under active development. We welcome any questions or suggestions. Please submit an issue on Github, or reach us at [email protected] and [email protected].

Owner
Holly Wiberg
Holly Wiberg
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023