Static-test - A playground to play with ideas related to testing the comparability of the code

Overview

Static test playground

⚠️ The code is just an experiment. Compiles and runs on Ubuntu 20.04. Work with other systems is not guaranteed. ⚠️

What is a static test

If we want to check that some code does not compile there is no way to write a test for it.

This repo aims at solving this problem.

How it looks to the user

The proposal for the user interface for this feature is to piggyback on GTest pipeline as follows:

#include <gtest/gtest.h>
#include "static_test.h"

STATIC_TEST(foo) {
  Foo foo;
  foo.bar();
  SHOULD_NOT_COMPILE(foo.stuff());
  SHOULD_NOT_COMPILE_WITH_MESSAGE(foo.stuff(), "has no member named 'stuff'");
}

The user is able to write a code to check that some code should not compile. All the code outside of the SHOULD_NOT_COMPILE or SHOULD_NOT_COMPILE_WITH_MESSAGE macros is compiled and run as expected. The compiler will happily report any errors back to the user if they should make any within the STATIC_TEST scope. If the code under SHOULD_NOT_COMPILE ends up actually compiling a runtime error will be issued with a description of this.

This test can be run within this repo as:

./bazelisk test --test_output=all //foo:test_foo

The approximate output of this test if nothing fails would be smth like this:

[----------] 1 test from StaticTest__foo
[ RUN      ] StaticTest__foo.foo
[ COMPILE STATIC TEST ] foo
[                  OK ] foo
[       OK ] StaticTest__foo.foo (966 ms)
[----------] 1 test from StaticTest__foo (966 ms total)

If there is a failure, the line that causes the failure will be printed like so:

[----------] 1 test from StaticTest__FooMixedCorrectAndWrongTest
[ RUN      ] StaticTest__SomeTest.SomeTest
[ COMPILE STATIC TEST ] SomeTest
ERROR: foo/test_foo.cpp:35: must fail to compile but instead compiled without error.
foo/test_foo.cpp:0: Failure
Some of the static tests failed. See above for error.
[              FAILED ] SomeTest
[  FAILED  ] StaticTest__SomeTest.SomeTest (1403 ms)
[----------] 1 test from StaticTest__SomeTest (1403 ms total)

Currently, the code expects to have a compilation database with at the root of the project. This can be generated from a bazel build using the following repository: https://github.com/grailbio/bazel-compilation-database. Just download it anywhere and call the generate.sh script in the folder of this project.

Eventually, we might want to plug this into the build system to make sure we have everything at hand when running the test.

How to check that something fails to compile

We obviously cannot write a normal unit test for this, as if we write code that does not compile it, well, does not compile. The only way I can think of here is to run an external tool.

So the STATIC_TEST macro would expand into a class that will do work in its constructor. It will essentially call an external tool providing it with the name of the static test and a path to the current file utilizing __FILE__. If we know the compilation flags for this file we can write a new temporary cpp file with the contents:

#include <gtest/gtest.h>

#include "foo/foo.h"
#include "static_test/static_test.h"

int main()
{
  Foo foo;
  foo.bar();
  foo.stuff();
  foo.baz();
  return 0;
}

We can then compile this file using all the same compilation flags and check if there is an error that matches the error message regex provided into the message. If there is an error, then we pass the test. If there is no error that matches, we fail the test.

Owner
Igor Bogoslavskyi
Researcher interested in LiDAR scene understanding, localization and mapping.
Igor Bogoslavskyi
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022