Stitch it in Time: GAN-Based Facial Editing of Real Videos

Related tags

Deep LearningSTIT
Overview

STIT - Stitch it in Time

arXiv CGP WAI

[Project Page]

Stitch it in Time: GAN-Based Facial Editing of Real Videos
Rotem Tzaban, Ron Mokady, Rinon Gal, Amit Bermano, Daniel Cohen-Or

Abstract:
The ability of Generative Adversarial Networks to encode rich semantics within their latent space has been widely adopted for facial image editing. However, replicating their success with videos has proven challenging. Sets of high-quality facial videos are lacking, and working with videos introduces a fundamental barrier to overcome - temporal coherency. We propose that this barrier is largely artificial. The source video is already temporally coherent, and deviations from this state arise in part due to careless treatment of individual components in the editing pipeline. We leverage the natural alignment of StyleGAN and the tendency of neural networks to learn low frequency functions, and demonstrate that they provide a strongly consistent prior. We draw on these insights and propose a framework for semantic editing of faces in videos, demonstrating significant improvements over the current state-of-the-art. Our method produces meaningful face manipulations, maintains a higher degree of temporal consistency, and can be applied to challenging, high quality, talking head videos which current methods struggle with.

Requirements

Pytorch(tested with 1.10, should work with 1.8/1.9 as well) + torchvision

For the rest of the requirements, run:

pip install Pillow imageio imageio-ffmpeg dlib face-alignment opencv-python click wandb tqdm scipy matplotlib clip lpips 

Pretrained models

In order to use this project you need to download pretrained models from the following Link.

Unzip it inside the project's main directory.

You can use the download_models.sh script (requires installing gdown with pip install gdown)

Alternatively, you can unzip the models to a location of your choice and update configs/path_config.py accordingly.

Splitting videos into frames

Our code expects videos in the form of a directory with individual frame images. To produce such a directory from an existing video, we recommend using ffmpeg:

ffmpeg -i "video.mp4" "video_frames/out%04d.png"

Example Videos

The videos used to produce our results can be downloaded from the following Link.

Inversion

To invert a video run:

python train.py --input_folder /path/to/images_dir \ 
 --output_folder /path/to/experiment_dir \
 --run_name RUN_NAME \
 --num_pti_steps NUM_STEPS

This includes aligning, cropping, e4e encoding and PTI

For example:

python train.py --input_folder /data/obama \ 
 --output_folder training_results/obama \
 --run_name obama \
 --num_pti_steps 80

Weights and biases logging is disabled by default. to enable, add --use_wandb

Naive Editing

To run edits without stitching tuning:

python edit_video.py --input_folder /path/to/images_dir \ 
 --output_folder /path/to/experiment_dir \
 --run_name RUN_NAME \
 --edit_name EDIT_NAME \
 --edit_range EDIT_RANGE \  

edit_range determines the strength of the edits applied. It should be in the format RANGE_START RANGE_END RANGE_STEPS.
for example, if we use --edit_range 1 5 2, we will apply edits with strength 1, 3 and 5.

For young Obama use:

python edit_video.py --input_folder /data/obama \ 
 --output_folder edits/obama/ \
 --run_name obama \
 --edit_name age \
 --edit_range -8 -8 1 \  

Editing + Stitching Tuning

To run edits with stitching tuning:

python edit_video_stitching_tuning.py --input_folder /path/to/images_dir \ 
 --output_folder /path/to/experiment_dir \
 --run_name RUN_NAME \
 --edit_name EDIT_NAME \
 --edit_range EDIT_RANGE \
 --outer_mask_dilation MASK_DILATION

We support early breaking the stitching tuning process, when the loss reaches a specified threshold.
This enables us to perform more iterations for difficult frames while maintaining a reasonable running time.
To use this feature, add --border_loss_threshold THRESHOLD to the command(Shown in the Jim and Kamala Harris examples below).
For videos with a simple background to reconstruct (e.g Obama, Jim, Emma Watson, Kamala Harris), we use THRESHOLD=0.005.
For videos where a more exact reconstruction of the background is required (e.g Michael Scott), we use THRESHOLD=0.002.
Early breaking is disabled by default.

For young Obama use:

python edit_video_stitching_tuning.py --input_folder /data/obama \ 
 --output_folder edits/obama/ \
 --run_name obama \
 --edit_name age \
 --edit_range -8 -8 1 \  
 --outer_mask_dilation 50

For gender editing on Obama use:

python edit_video_stitching_tuning.py --input_folder /data/obama \ 
 --output_folder edits/obama/ \
 --run_name obama \
 --edit_name gender \
 --edit_range -6 -6 1 \  
 --outer_mask_dilation 50

For young Emma Watson use:

python edit_video_stitching_tuning.py --input_folder /data/emma_watson \ 
 --output_folder edits/emma_watson/ \
 --run_name emma_watson \
 --edit_name age \
 --edit_range -8 -8 1 \  
 --outer_mask_dilation 50

For smile removal on Emma Watson use:

python edit_video_stitching_tuning.py --input_folder /data/emma_watson \ 
 --output_folder edits/emma_watson/ \
 --run_name emma_watson \
 --edit_name smile \
 --edit_range -3 -3 1 \  
 --outer_mask_dilation 50

For Emma Watson lipstick editing use: (done with styleclip global direction)

python edit_video_stitching_tuning.py --input_folder /data/emma_watson \ 
 --output_folder edits/emma_watson/ \
 --run_name emma_watson \
 --edit_type styleclip_global \
 --edit_name lipstick \
 --neutral_class "Face" \
 --target_class "Face with lipstick" \
 --beta 0.2 \
 --edit_range 10 10 1 \  
 --outer_mask_dilation 50

For Old + Young Jim use (with early breaking):

python edit_video_stitching_tuning.py --input_folder datasets/jim/ \
 --output_folder edits/jim \
 --run_name jim \
 --edit_name age \
 --edit_range -8 8 2 \
 --outer_mask_dilation 50 \ 
 --border_loss_threshold 0.005

For smiling Kamala Harris:

python edit_video_stitching_tuning.py \
 --input_folder datasets/kamala/ \ 
 --output_folder edits/kamala \
 --run_name kamala \
 --edit_name smile \
 --edit_range 2 2 1 \
 --outer_mask_dilation 50 \
 --border_loss_threshold 0.005

Example Results

With stitching tuning:

out.mp4

Without stitching tuning:

out.mp4

Gender editing:

out.mp4

Young Emma Watson:

out.mp4

Emma Watson with lipstick:

out.mp4

Emma Watson smile removal:

out.mp4

Old Jim:

out.mp4

Young Jim:

out.mp4

Smiling Kamala Harris:

out.mp4

Out of domain video editing (Animations)

For editing out of domain videos, Some different parameters are required while training. First, dlib's face detector doesn't detect all animated faces, so we use a different face detector provided by the face_alignment package. Second, we reduce the smoothing of the alignment parameters with --center_sigma 0.0 Third, OOD videos require more training steps, as they are more difficult to invert.

To train, we use:

python train.py --input_folder datasets/ood_spiderverse_gwen/ \
 --output_folder training_results/ood \
 --run_name ood \
 --num_pti_steps 240 \
 --use_fa \
 --center_sigma 0.0

Afterwards, editing is performed the same way:

python edit_video.py --input_folder datasets/ood_spiderverse_gwen/ \
 --output_folder edits/ood --run_name ood \
 --edit_name smile --edit_range 2 2 1

out.mp4

python edit_video.py --input_folder datasets/ood_spiderverse_gwen/ \
 --output_folder edits/ood \
 --run_name ood \
 --edit_type styleclip_global
 --edit_range 10 10 1
 --edit_name lipstick
 --target_class 'Face with lipstick'

out.mp4

Credits:

StyleGAN2-ada model and implementation:
https://github.com/NVlabs/stylegan2-ada-pytorch Copyright © 2021, NVIDIA Corporation.
Nvidia Source Code License https://nvlabs.github.io/stylegan2-ada-pytorch/license.html

PTI implementation:
https://github.com/danielroich/PTI
Copyright (c) 2021 Daniel Roich
License (MIT) https://github.com/danielroich/PTI/blob/main/LICENSE

LPIPS model and implementation:
https://github.com/richzhang/PerceptualSimilarity
Copyright (c) 2020, Sou Uchida
License (BSD 2-Clause) https://github.com/richzhang/PerceptualSimilarity/blob/master/LICENSE

e4e model and implementation:
https://github.com/omertov/encoder4editing Copyright (c) 2021 omertov
License (MIT) https://github.com/omertov/encoder4editing/blob/main/LICENSE

StyleCLIP model and implementation:
https://github.com/orpatashnik/StyleCLIP Copyright (c) 2021 orpatashnik
License (MIT) https://github.com/orpatashnik/StyleCLIP/blob/main/LICENSE

StyleGAN2 Distillation for Feed-forward Image Manipulation - for editing directions:
https://github.com/EvgenyKashin/stylegan2-distillation
Copyright (c) 2019, Yandex LLC
License (Creative Commons NonCommercial) https://github.com/EvgenyKashin/stylegan2-distillation/blob/master/LICENSE

face-alignment Library:
https://github.com/1adrianb/face-alignment
Copyright (c) 2017, Adrian Bulat
License (BSD 3-Clause License) https://github.com/1adrianb/face-alignment/blob/master/LICENSE

face-parsing.PyTorch:
https://github.com/zllrunning/face-parsing.PyTorch
Copyright (c) 2019 zll
License (MIT) https://github.com/zllrunning/face-parsing.PyTorch/blob/master/LICENSE

Citation

If you make use of our work, please cite our paper:

@misc{tzaban2022stitch,
      title={Stitch it in Time: GAN-Based Facial Editing of Real Videos},
      author={Rotem Tzaban and Ron Mokady and Rinon Gal and Amit H. Bermano and Daniel Cohen-Or},
      year={2022},
      eprint={2201.08361},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022