Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

Overview

MAAD: A Model for Attended Awareness in Driving

Install // Datasets // Training // Experiments // Analysis // License

Official PyTorch implementation of MAAD: A Model and Dataset for "Attended Awareness" in Driving invented by the RAD Team at Toyota Research Institute (TRI) Deepak Gopinath, Guy Rosman, Simon Stent, Katsuya Terahata, Luke Fletcher, Brenna Argall, John Leonard.

MAAD affords estimation of attended awareness based on noisy gaze estimates and scene video over time. This learned model additionally affords saliency estimation and refinement of a noisy gaze signal. We demonstrate the performance of the model on a new, annotated dataset that explores the gaze and perceived attended awareness of subjects as they observe a variety of driving scenarios. In this dataset, we provide a surrogate annotated third person estimate of attended awareness as a reproducible supervisory cue.

Paper to be available on Arxiv soon!

Install

You need a machine with recent Nvidia drivers and a GPU with at least 16GB of memory (more for the bigger models at higher resolution). We recommend using conda to have a reproducible environment. To setup your environment, type in a terminal (only tested in Ubuntu 18.04 and PyTorch 1.7.0):

git clone https://github.com/ToyotaResearchInstitute/att-aware.git
cd att-aware
# if you want to use conda (recommended)
conda env create -f environment.pt170.yml
conda activate pt170

We will list below all commands as if run directly inside the conda environment. If you encounter out of memory issues, try a lower batch_size parameter in the args_file.py.

Datasets

All the datasets are assumed to be downloaded in ~/data/.

Videos

MAAD uses subset of videos (8 videos of urban driving) from th Dr(Eye)ve Dataset. The entire Dr(Eye)ve dataset can be downloaded at Dr(Eye)ve Full Dataset. We collected gaze and attended awareness annotation data on the videos [06, 07, 10, 11, 26, 35, 53, 60]. Each video folder should be located at ~/data/dreyeve/VIDEO_ID

Gaze Dataset

Our complete dataset comprises approximately 24.5 hours of gaze tracking data captured via multiple exposures from different subjects. We recruited 23 subjects (aged 20-55), who each watched a subset of video clips with their heads mounted in a chin-rest after a 9-point calibration procedure. Their primary task was to monitor the driving scene as a safety driver might monitor an autonomous vehicle. While not a perfect substitute for in-car driving data collection, this primary task allowed for the capture of many of the characteristics of attentive driving behavior. In order to explore the effect of the cognitive task difference (vs. in-car data) on the gaze and awareness estimates, subjects viewed the video under different cognitive task modifiers, as detailed in Section~\ref{sec:data:conditions} (data collected with non-null cognitive task modifiers comprise 30% of total captured gaze data). Around 45% of video stimuli were watched more than once, of which 11% (40 minutes) was observed by 16 or more subjects.

The gaze dataset will be made available as a pkl (all_videos_subjects_tasks_gaze_data.pkl) file. Each subjects' gaze data is stored as a pandas dataframe in the pkl file (organized according to video, subject and task id). The pkl file is expected to be located at ~/data/all_videos_subjects_tasks_gaze_data.pkl

Attended Awareness Annotation Dataset

Our complete attended awareness annotation dataset consists of 54019 third-party annotations of approximately 10s long videos from the Gaze Dataset. Annotators watched a video snippet where the subject's gaze was marked by two circles centered at the gaze point. One circle (green) size was set to the diameter of a person's central foveal vision area at the viewing distance. Another circle (red) was set to a diameter twice the foveal vision circle. At the end of the video snippet, a specific location was chosen and the annotators were asked whether they believe the subject has attended to that location on a scale between 1 and 5 (1-no, definitely not aware, 5-yes, definitely aware). Each annotation consists of the following fields:

video_id | query_frame | subject | cognitive_modifier | query_x | query_y | anno_is_aware | anno_is_object | anno_expected_awareness | anno_surprise_factor

Any field which starts with anno is the annotation. For more details refer to supplementary material of the paper. Datasets are assumed to be downloaded in ~/data/datasets/MAAD_ATT_AWARENESS_LABELS.csv (can be a symbolic link).

Both the gaze dataset and the annotation dataset are available as a zipped folder for download [here].

Optic Flow

MAAD uses optic flow of the videos as a side-channel information to perform temporal regularizations. For the purposes of our model, we utilized [RAFT: Recurrent All Pairs Field Transforms for Optical Flow] to generate optic flow. For each video in the dataset, the optic flow model has to be run all frame pairs N frames apart. The current code assumes that the optic flow generated is at half-resolution with a padding of 2 pixels (on each side) along the y direction. These parameters denoted as OPTIC_FLOW_SCALE_FACTOR, OPTIC_FLOW_H_PAD, OPTIC_FLOW_W_PAD can be altered in the att-aware/src/maad/utils/maad_consts.py file to suit your needs.

Optic flow is assumed to be cached as ~/maad_cache/optic_flow/VIDEO_ID/frame_N.npy

Segmentation Masks

MAAD uses segmentation masks for the videos in order to perform diffusivity-based spatial regularization. For the purposes of our model, we used MaskRCNN to generate the segmentation masks for each frame for each video.

Segmentation masks are assumed to be cached as ~/maad_cache/segmentations_from_video/VIDEO_ID/segmentations_frames/frame_N.png

During training, lower resolution mask images will be generated by resizing the full sized masks and will be cached back into the same location as frame_N_ar_{aspect_ratio_reduction_factor}.png.

Training

MAAD model training can be done using the train.py script. Run the following command to train a model using all 8 videos (split into a train and test sets) using the parameter settings used in the ICCV paper. python train.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp Default resolution used is 240 x 135. All training args are present in /att-aware/src/maad/config/args_file.py

Models will be saved at ~/maad/models/TRAINING_HASH_NAME

Experiments

Three different experiments are proposed for MAAD. All experiments are done using the test split. Gaze Denoising and Awareness Estimation uses the trained model for inference. Gaze Calibration experiment involves continued training to optimize the miscalibration transform. All experiment results are saved as jsons in ~/maad/results/

Gaze Denoising

MAAD can be used for denoising noisy gaze estimates by relying on saliency information. The denoising experiment script is located at att-aware/src/scripts/experiment_maad_denoising.py

The script can be run using the following command: python experiment_maad_denoising.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --max_inference_num_batches 1000

Gaze Recalibration

MAAD can be used for recalibration of a miscalibrated gaze (due to errors in DMS). The calibration experiment script is located at att-aware/src/scripts/experiment_maad_calibration.py The calibration experiment script can be run using the follow command:

python experiment_maad_calibration_optimization.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --dropout_ratio '{"driver_facing":0.0, "optic_flow":0.0}'

Note that, the above command assumes that the model used for recalibration was trained using the default cost parameters. It is important that the cost coefficients match the original values. Furthermore, the dropout_ratio for driver_facing gaze module should be set at 0.0 so that gaze is available as a side-channel input to the network at all times. The miscalibration noise levels can be specified using the miscalibration_noise_levels argument.

Awareness Estimation

MAAD can used for attended awareness estimation based on scene context and an imperfect gaze information. The attended awareness estimation script is located at att-aware/src/scripts/experiment_maad_awareness_estimation.py

The attended awareness estimation script can be run using the following command: python experiment_maad_awareness_estimation.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt

Analysis

We have also provided scripts to parse and compute statistics on the results outputted by the experiment scripts. These scripts are available at att-aware/src/scripts/parse_*_data.py where * could be denoising, calibration_optimization, awareness_estimation

The results of the parsing scripts will be outputted directly in the terminal. The parsing scripts can be run using the following commands. python parse_denoising_data.py --results_json_prefix ~/maad/results/GAZE_DENOISING. Assumes that the result of the denoising experiment is in GAZE_DENOISING.json

python parse_awareness_estimation_data.py --results_json_prefix ~/maad/results/AWARENESS_ESTIMATION. Assumes that the result of the awareness estimation experiment is in AWARENESS_ESTIMATION.json

The results of the calibration experiments are expected to stored in files with the following filename convention experiment_type_gaze_calibration_miscalibration_noise_level_NOISELEVEL_optimization_run_num_OPTIMIZATIONNUM_FILENAMEAPPEND.json, where NOISELEVEL is in the miscalibration_noise_levels argument in experiment_maad_calibration_optimization.py OPTIMIZATIONNUM goes from 0 to num_optimization_runs-1 and FILENAMEAPPEND is the filename_append argument in the experiment.

python parse_calibration_optimization_data.py --folder_containing_results FOLDER_CONTAINING_JSONS --num_optimization_runs (same val as used in the experiment) --miscalibration_noise_levels (same val as used in the experiment) --filename_append (same val as used in the experiment)

License

The source code is released under the MIT License

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022