Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

Overview

MAAD: A Model for Attended Awareness in Driving

Install // Datasets // Training // Experiments // Analysis // License

Official PyTorch implementation of MAAD: A Model and Dataset for "Attended Awareness" in Driving invented by the RAD Team at Toyota Research Institute (TRI) Deepak Gopinath, Guy Rosman, Simon Stent, Katsuya Terahata, Luke Fletcher, Brenna Argall, John Leonard.

MAAD affords estimation of attended awareness based on noisy gaze estimates and scene video over time. This learned model additionally affords saliency estimation and refinement of a noisy gaze signal. We demonstrate the performance of the model on a new, annotated dataset that explores the gaze and perceived attended awareness of subjects as they observe a variety of driving scenarios. In this dataset, we provide a surrogate annotated third person estimate of attended awareness as a reproducible supervisory cue.

Paper to be available on Arxiv soon!

Install

You need a machine with recent Nvidia drivers and a GPU with at least 16GB of memory (more for the bigger models at higher resolution). We recommend using conda to have a reproducible environment. To setup your environment, type in a terminal (only tested in Ubuntu 18.04 and PyTorch 1.7.0):

git clone https://github.com/ToyotaResearchInstitute/att-aware.git
cd att-aware
# if you want to use conda (recommended)
conda env create -f environment.pt170.yml
conda activate pt170

We will list below all commands as if run directly inside the conda environment. If you encounter out of memory issues, try a lower batch_size parameter in the args_file.py.

Datasets

All the datasets are assumed to be downloaded in ~/data/.

Videos

MAAD uses subset of videos (8 videos of urban driving) from th Dr(Eye)ve Dataset. The entire Dr(Eye)ve dataset can be downloaded at Dr(Eye)ve Full Dataset. We collected gaze and attended awareness annotation data on the videos [06, 07, 10, 11, 26, 35, 53, 60]. Each video folder should be located at ~/data/dreyeve/VIDEO_ID

Gaze Dataset

Our complete dataset comprises approximately 24.5 hours of gaze tracking data captured via multiple exposures from different subjects. We recruited 23 subjects (aged 20-55), who each watched a subset of video clips with their heads mounted in a chin-rest after a 9-point calibration procedure. Their primary task was to monitor the driving scene as a safety driver might monitor an autonomous vehicle. While not a perfect substitute for in-car driving data collection, this primary task allowed for the capture of many of the characteristics of attentive driving behavior. In order to explore the effect of the cognitive task difference (vs. in-car data) on the gaze and awareness estimates, subjects viewed the video under different cognitive task modifiers, as detailed in Section~\ref{sec:data:conditions} (data collected with non-null cognitive task modifiers comprise 30% of total captured gaze data). Around 45% of video stimuli were watched more than once, of which 11% (40 minutes) was observed by 16 or more subjects.

The gaze dataset will be made available as a pkl (all_videos_subjects_tasks_gaze_data.pkl) file. Each subjects' gaze data is stored as a pandas dataframe in the pkl file (organized according to video, subject and task id). The pkl file is expected to be located at ~/data/all_videos_subjects_tasks_gaze_data.pkl

Attended Awareness Annotation Dataset

Our complete attended awareness annotation dataset consists of 54019 third-party annotations of approximately 10s long videos from the Gaze Dataset. Annotators watched a video snippet where the subject's gaze was marked by two circles centered at the gaze point. One circle (green) size was set to the diameter of a person's central foveal vision area at the viewing distance. Another circle (red) was set to a diameter twice the foveal vision circle. At the end of the video snippet, a specific location was chosen and the annotators were asked whether they believe the subject has attended to that location on a scale between 1 and 5 (1-no, definitely not aware, 5-yes, definitely aware). Each annotation consists of the following fields:

video_id | query_frame | subject | cognitive_modifier | query_x | query_y | anno_is_aware | anno_is_object | anno_expected_awareness | anno_surprise_factor

Any field which starts with anno is the annotation. For more details refer to supplementary material of the paper. Datasets are assumed to be downloaded in ~/data/datasets/MAAD_ATT_AWARENESS_LABELS.csv (can be a symbolic link).

Both the gaze dataset and the annotation dataset are available as a zipped folder for download [here].

Optic Flow

MAAD uses optic flow of the videos as a side-channel information to perform temporal regularizations. For the purposes of our model, we utilized [RAFT: Recurrent All Pairs Field Transforms for Optical Flow] to generate optic flow. For each video in the dataset, the optic flow model has to be run all frame pairs N frames apart. The current code assumes that the optic flow generated is at half-resolution with a padding of 2 pixels (on each side) along the y direction. These parameters denoted as OPTIC_FLOW_SCALE_FACTOR, OPTIC_FLOW_H_PAD, OPTIC_FLOW_W_PAD can be altered in the att-aware/src/maad/utils/maad_consts.py file to suit your needs.

Optic flow is assumed to be cached as ~/maad_cache/optic_flow/VIDEO_ID/frame_N.npy

Segmentation Masks

MAAD uses segmentation masks for the videos in order to perform diffusivity-based spatial regularization. For the purposes of our model, we used MaskRCNN to generate the segmentation masks for each frame for each video.

Segmentation masks are assumed to be cached as ~/maad_cache/segmentations_from_video/VIDEO_ID/segmentations_frames/frame_N.png

During training, lower resolution mask images will be generated by resizing the full sized masks and will be cached back into the same location as frame_N_ar_{aspect_ratio_reduction_factor}.png.

Training

MAAD model training can be done using the train.py script. Run the following command to train a model using all 8 videos (split into a train and test sets) using the parameter settings used in the ICCV paper. python train.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp Default resolution used is 240 x 135. All training args are present in /att-aware/src/maad/config/args_file.py

Models will be saved at ~/maad/models/TRAINING_HASH_NAME

Experiments

Three different experiments are proposed for MAAD. All experiments are done using the test split. Gaze Denoising and Awareness Estimation uses the trained model for inference. Gaze Calibration experiment involves continued training to optimize the miscalibration transform. All experiment results are saved as jsons in ~/maad/results/

Gaze Denoising

MAAD can be used for denoising noisy gaze estimates by relying on saliency information. The denoising experiment script is located at att-aware/src/scripts/experiment_maad_denoising.py

The script can be run using the following command: python experiment_maad_denoising.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --max_inference_num_batches 1000

Gaze Recalibration

MAAD can be used for recalibration of a miscalibrated gaze (due to errors in DMS). The calibration experiment script is located at att-aware/src/scripts/experiment_maad_calibration.py The calibration experiment script can be run using the follow command:

python experiment_maad_calibration_optimization.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --dropout_ratio '{"driver_facing":0.0, "optic_flow":0.0}'

Note that, the above command assumes that the model used for recalibration was trained using the default cost parameters. It is important that the cost coefficients match the original values. Furthermore, the dropout_ratio for driver_facing gaze module should be set at 0.0 so that gaze is available as a side-channel input to the network at all times. The miscalibration noise levels can be specified using the miscalibration_noise_levels argument.

Awareness Estimation

MAAD can used for attended awareness estimation based on scene context and an imperfect gaze information. The attended awareness estimation script is located at att-aware/src/scripts/experiment_maad_awareness_estimation.py

The attended awareness estimation script can be run using the following command: python experiment_maad_awareness_estimation.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt

Analysis

We have also provided scripts to parse and compute statistics on the results outputted by the experiment scripts. These scripts are available at att-aware/src/scripts/parse_*_data.py where * could be denoising, calibration_optimization, awareness_estimation

The results of the parsing scripts will be outputted directly in the terminal. The parsing scripts can be run using the following commands. python parse_denoising_data.py --results_json_prefix ~/maad/results/GAZE_DENOISING. Assumes that the result of the denoising experiment is in GAZE_DENOISING.json

python parse_awareness_estimation_data.py --results_json_prefix ~/maad/results/AWARENESS_ESTIMATION. Assumes that the result of the awareness estimation experiment is in AWARENESS_ESTIMATION.json

The results of the calibration experiments are expected to stored in files with the following filename convention experiment_type_gaze_calibration_miscalibration_noise_level_NOISELEVEL_optimization_run_num_OPTIMIZATIONNUM_FILENAMEAPPEND.json, where NOISELEVEL is in the miscalibration_noise_levels argument in experiment_maad_calibration_optimization.py OPTIMIZATIONNUM goes from 0 to num_optimization_runs-1 and FILENAMEAPPEND is the filename_append argument in the experiment.

python parse_calibration_optimization_data.py --folder_containing_results FOLDER_CONTAINING_JSONS --num_optimization_runs (same val as used in the experiment) --miscalibration_noise_levels (same val as used in the experiment) --filename_append (same val as used in the experiment)

License

The source code is released under the MIT License

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023