Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Overview

SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes

Paper | Supp | Video | Project Page | Blog (AITAVG)

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes. We propose a novel forward skinning module to animate neural implicit shapes with good generalization to unseen poses.

If you find our code or paper useful, please cite as

@inproceedings{chen2021snarf,
  title={SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes},
  author={Chen, Xu and Zheng, Yufeng and Black, Michael J and Hilliges, Otmar and Geiger, Andreas},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Quick Start

Clone this repo:

git clone https://github.com/xuchen-ethz/snarf.git
cd snarf

Install environment:

conda env create -f environment.yml
conda activate snarf
python setup.py install

Download SMPL models (1.0.0 for Python 2.7 (10 shape PCs)) and move them to the corresponding places:

mkdir lib/smpl/smpl_model/
mv /path/to/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl lib/smpl/smpl_model/SMPL_FEMALE.pkl
mv /path/to/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl lib/smpl/smpl_model/SMPL_MALE.pkl

Download our pretrained models and test motion sequences:

sh ./download_data.sh

Run a quick demo for clothed human:

python demo.py expname=cape subject=3375 demo.motion_path=data/aist_demo/seqs +experiments=cape

You can the find the video in outputs/cape/3375/demo.mp4 and images in outputs/cape/3375/images/. To save the meshes, add demo.save_mesh=true to the command.

You can also try other subjects (see outputs/data/cape for available options) by setting subject=xx, and other motion sequences from AMASS by setting demo.motion_path=/path/to/amass_modetion.npz.

Some motion sequences have high fps and one might want to skip some frames. To do this, add demo.every_n_frames=x to consider every x frame in the motion sequence. (e.g. demo.every_n_frames=10 for PosePrior sequences)

By default, we use demo.fast_mode=true for fast mesh extraction. In this mode, we first extract mesh in canonical space, and then forward skin the mesh to posed space. This bypasses the root finding during inference, thus is faster. However, it's not really deforming a continuous field. To first deform the continuous field and then extract mesh in deformed space, use demo.fast_mode=false instead.

Training and Evaluation

Install Additional Dependencies

Install kaolin for fast occupancy query from meshes.

git clone https://github.com/NVIDIAGameWorks/kaolin
cd kaolin
git checkout v0.9.0
python setup.py develop

Minimally Clothed Human

Prepare Datasets

Download the AMASS dataset. We use ''DFaust Snythetic'' and ''PosePrior'' subsets and SMPL-H format. Unzip the dataset into data folder.

tar -xf DFaust67.tar.bz2 -C data
tar -xf MPILimits.tar.bz2 -C data

Preprocess dataset:

python preprocess/sample_points.py --output_folder data/DFaust_processed
python preprocess/sample_points.py --output_folder data/MPI_processed --skip 10 --poseprior

Training

Run the following command to train for a specified subject:

python train.py subject=50002

Training logs are available on wandb (registration needed, free of charge). It should take ~12h on a single 2080Ti.

Evaluation

Run the following command to evaluate the method for a specified subject on within distribution data (DFaust test split):

python test.py subject=50002

and outside destribution (PosePrior):

python test.py subject=50002 datamodule=jointlim

Generate Animation

You can use the trained model to generate animation (same as in Quick Start):

python demo.py expname='dfaust' subject=50002 demo.motion_path='data/aist_demo/seqs'

Clothed Human

Training

Download the CAPE dataset and unzip into data folder.

Run the following command to train for a specified subject and clothing type:

python train.py datamodule=cape subject=3375 datamodule.clothing='blazerlong' +experiments=cape  

Training logs are available on wandb. It should take ~24h on a single 2080Ti.

Generate Animation

You can use the trained model to generate animation (same as in Quick Start):

python demo.py expname=cape subject=3375 demo.motion_path=data/aist_demo/seqs +experiments=cape

Acknowledgement

We use the pre-processing code in PTF and LEAP with some adaptions (./preprocess). The network and sampling part of the code (lib/model/network.py and lib/model/sample.py) is implemented based on IGR and IDR. The code for extracting mesh (lib/utils/meshing.py) is adapted from NASA. Our implementation of Broyden's method (lib/model/broyden.py) is based on DEQ. We sincerely thank these authors for their awesome work.

[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023