BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Related tags

Deep Learningbddm
Overview

Bilateral Denoising Diffusion Models (BDDMs)

GitHub Stars visitors arXiv demo

This is the official PyTorch implementation of the following paper:

BDDM: BILATERAL DENOISING DIFFUSION MODELS FOR FAST AND HIGH-QUALITY SPEECH SYNTHESIS
Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Abstract: Diffusion probabilistic models (DPMs) and their extensions have emerged as competitive generative models yet confront challenges of efficient sampling. We propose a new bilateral denoising diffusion model (BDDM) that parameterizes both the forward and reverse processes with a schedule network and a score network, which can train with a novel bilateral modeling objective. We show that the new surrogate objective can achieve a lower bound of the log marginal likelihood tighter than a conventional surrogate. We also find that BDDM allows inheriting pre-trained score network parameters from any DPMs and consequently enables speedy and stable learning of the schedule network and optimization of a noise schedule for sampling. Our experiments demonstrate that BDDMs can generate high-fidelity audio samples with as few as three sampling steps. Moreover, compared to other state-of-the-art diffusion-based neural vocoders, BDDMs produce comparable or higher quality samples indistinguishable from human speech, notably with only seven sampling steps (143x faster than WaveGrad and 28.6x faster than DiffWave).

Paper: Published at ICLR 2022 on OpenReview

BDDM

This implementation supports model training and audio generation, and also provides the pre-trained models for the benchmark LJSpeech and VCTK dataset.

Visit our demo page for audio samples.

Updates:

  • May 20, 2021: Released our follow-up work FastDiff on GitHub, where we futher optimized the speed-and-quality trade-off.
  • May 10, 2021: Added the experiment configurations and model checkpoints for the VCTK dataset.
  • May 9, 2021: Added the searched noise schedules for the LJSpeech and VCTK datasets.
  • March 20, 2021: Released the PyTorch implementation of BDDM with pre-trained models for the LJSpeech dataset.

Recipes:

  • (Option 1) To train the BDDM scheduling network yourself, you can download the pre-trained score network from philsyn/DiffWave-Vocoder (provided at egs/lj/DiffWave.pkl), and follow the training steps below. (Start from Step I.)
  • (Option 2) To search for noise schedules using BDDM, we provide a pre-trained BDDM for LJSpeech at egs/lj/DiffWave-GALR.pkl and for VCTK at egs/vctk/DiffWave-GALR.pkl . (Start from Step III.)
  • (Option 3) To directly generate samples using BDDM, we provide the searched schedules for LJSpeech at egs/lj/noise_schedules and for VCTK at egs/vctk/noise_schedules (check conf.yml for the respective configurations). (Start from Step IV.)

Getting Started

We provide an example of how you can generate high-fidelity samples using BDDMs.

To try BDDM on your own dataset, simply clone this repo in your local machine provided with NVIDIA GPU + CUDA cuDNN and follow the below intructions.

Dependencies

Step I. Data Preparation and Configuraion

Download the LJSpeech dataset.

For training, we first need to setup a file conf.yml for configuring the data loader, the score and the schedule networks, the training procedure, the noise scheduling and sampling parameters.

Note: Appropriately modify the paths in "train_data_dir" and "valid_data_dir" for training; and the path in "gen_data_dir" for sampling. All dir paths should be link to a directory that store the waveform audios (in .wav) or the Mel-spectrogram files (in .mel).

Step II. Training a Schedule Network

Suppose that a well-trained score network (theta) is stored at $theta_path, we start by modifying "load": $theta_path in conf.yml.

After modifying the relevant hyperparameters for a schedule network (especially "tau"), we can train the schedule network (f_phi in paper) using:

# Training on device 0
sh train.sh 0 conf.yml

Note: In practice, we found that 10K training steps would be enough to obtain a promising scheduling network. This normally takes no more than half an hour for training with one GPU.

Step III. Searching for Noise Schedules

Given a well-trained BDDM (theta, phi), we can now run the noise scheduling algorithm to find the best schedule (optimizing the trade-off between quality and speed).

First, we set "load" in conf.yml to the path of the trained BDDM.

After setting the maximum number of sampling steps in scheduling ("N"), we run:

# Scheduling on device 0
sh schedule.sh 0 conf.yml

Step IV. Evaluation or Generation

For evaluation, we set "gen_data_dir" in conf.yml to the path of a directory that stores the test set of audios (in .wav).

For generation, we set "gen_data_dir" in conf.yml to the path of a directory that stores the Mel-spectrogram (by default in .mel generated by TacotronSTFT or by our dataset loader bddm/loader/dataset.py).

Then, we run:

# Generation/evaluation on device 0 (only support single-GPU scheduling)
sh generate.sh 0 conf.yml

Acknowledgements

This implementation uses parts of the code from the following Github repos:
Tacotron2
DiffWave-Vocoder
as described in our code.

Citations

@inproceedings{lam2022bddm,
  title={BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis},
  author={Lam, Max WY and Wang, Jun and Su, Dan and Yu, Dong},
  booktitle={International Conference on Learning Representations},
  year={2022}
}

License

Copyright 2022 Tencent

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Disclaimer

This is not an officially supported Tencent product.

Owner
Research repositories.
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
yufan 81 Dec 08, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022