============================================================================================================ `MILA will stop developing Theano <https://groups.google.com/d/msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ>`_. The PyMC developers are continuing Theano development in a `fork <https://github.com/pymc-devs/theano-pymc>`_. ============================================================================================================ To install the package, see this page: http://deeplearning.net/software/theano/install.html For the documentation, see the project website: http://deeplearning.net/software/theano/ Related Projects: https://github.com/Theano/Theano/wiki/Related-projects It is recommended that you look at the documentation on the website, as it will be more current than the documentation included with the package. In order to build the documentation yourself, you will need sphinx. Issue the following command: :: python ./doc/scripts/docgen.py Documentation is built into ``html/`` The PDF of the documentation can be found at ``html/theano.pdf`` ================ DIRECTORY LAYOUT ================ ``Theano`` (current directory) is the distribution directory. * ``Theano/theano`` contains the package * ``Theano/theano`` has several submodules: * ``gof`` + ``compile`` are the core * ``scalar`` depends upon core * ``tensor`` depends upon ``scalar`` * ``sparse`` depends upon ``tensor`` * ``sandbox`` can depend on everything else * ``Theano/examples`` are copies of the example found on the wiki * ``Theano/benchmark`` and ``Theano/examples`` are in the distribution, but not in the Python package * ``Theano/bin`` contains executable scripts that are copied to the bin folder when the Python package is installed * Tests are distributed and are part of the package, i.e. fall in the appropriate submodules * ``Theano/doc`` contains files and scripts used to generate the documentation * ``Theano/html`` is where the documentation will be generated
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
Overview
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`
Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c
phylotorch-bito is a package providing an interface to BITO for phylotorch
phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"
Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".
Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).
Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:
A deep learning model for style-specific music generation.
DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo
Fastshap: A fast, approximate shap kernel
fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.
FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"
SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]
Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede
Aydin is a user-friendly, feature-rich, and fast image denoising tool
Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc
Joint Gaussian Graphical Model Estimation: A Survey
Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s
LaBERT - A length-controllable and non-autoregressive image captioning model.
Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.
LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t
Adaptive, interpretable wavelets across domains (NeurIPS 2021)
Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo