Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Overview

Adaptive wavelets

Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and more interpretable.

📚 docs • 📖 demo notebooks

Quickstart

Installation: pip install awave or clone the repo and run python setup.py install from the repo directory

Then, can use the core functions (see simplest example in notebooks/demo_simple_2d.ipynb or notebooks/demo_simple_1d.ipynb). See the docs for more information on arguments for these functions.

Given some data X, you can run the following:

from awave.utils.misc import get_wavefun
from awave.transform2d import DWT2d

wt = DWT2d(wave='db5', J=4)
wt.fit(X=X, lr=1e-1, num_epochs=10)  # this function alternatively accepts a dataloader
X_sparse = wt(X)  # uses the learned adaptive wavelet
phi, psi, x = get_wavefun(wt)  # can also inspect the learned adaptive wavelet

To distill a pretrained model named model, simply pass it as an additional argument to the fit function:

wt.fit(X=X, pretrained_model=model,
       lr=1e-1, num_epochs=10,
       lamL1attr=5) # control how much to regularize the model's attributions

Background

Official code for using / reproducing AWD from the paper "Adaptive wavelet distillation from neural networks through interpretations" (Ha et al. NeurIPS, 2021).
Abstract: Recent deep-learning models have achieved impressive prediction performance, but often sacrifice interpretability and computational efficiency. Interpretability is crucial in many disciplines, such as science and medicine, where models must be carefully vetted or where interpretation is the goal itself. Moreover, interpretable models are concise and often yield computational efficiency. Here, we propose adaptive wavelet distillation (AWD), a method which aims to distill information from a trained neural network into a wavelet transform. Specifically, AWD penalizes feature attributions of a neural network in the wavelet domain to learn an effective multi-resolution wavelet transform. The resulting model is highly predictive, concise, computationally efficient, and has properties (such as a multi-scale structure) which make it easy to interpret. In close collaboration with domain experts, we showcase how AWD addresses challenges in two real-world settings: cosmological parameter inference and molecular-partner prediction. In both cases, AWD yields a scientifically interpretable and concise model which gives predictive performance better than state-of-the-art neural networks. Moreover, AWD identifies predictive features that are scientifically meaningful in the context of respective domains.
Also provides an implementation for "Learning Sparse Wavelet Representations" (Recoskie & Mann, 2018)
Abstract: In this work we propose a method for learning wavelet filters directly from data. We accomplish this by framing the discrete wavelet transform as a modified convolutional neural network. We introduce an autoencoder wavelet transform network that is trained using gradient descent. We show that the model is capable of learning structured wavelet filters from synthetic and real data. The learned wavelets are shown to be similar to traditional wavelets that are derived using Fourier methods. Our method is simple to implement and easily incorporated into neural network architectures. A major advantage to our model is that we can learn from raw audio data.

Related work

  • TRIM (ICLR 2020 workshop pdf, github) - using simple reparameterizations, allows for calculating disentangled importances to transformations of the input (e.g. assigning importances to different frequencies)
  • ACD (ICLR 2019 pdf, github) - extends CD to CNNs / arbitrary DNNs, and aggregates explanations into a hierarchy
  • CDEP (ICML 2020 pdf, github) - penalizes CD / ACD scores during training to make models generalize better
  • DAC (arXiv 2019 pdf, github) - finds disentangled interpretations for random forests
  • PDR framework (PNAS 2019 pdf) - an overarching framewwork for guiding and framing interpretable machine learning

If this package is useful for you, please cite the following!

@article{ha2021adaptive,
  title={Adaptive wavelet distillation from neural networks through interpretations},
  author={Ha, Wooseok and Singh, Chandan and Lanusse, Francois and Song, Eli and Dang, Song and He, Kangmin and Upadhyayula, Srigokul and Yu, Bin},
  journal={arXiv preprint arXiv:2107.09145},
  year={2021}
}
Owner
Yu Group
Bin Yu Group at UC Berkeley
Yu Group
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022