The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Overview

Dice Loss for NLP Tasks

This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020.

Setup

  • Install Package Dependencies

The code was tested in Python 3.6.9+ and Pytorch 1.7.1. If you are working on ubuntu GPU machine with CUDA 10.1, please run the following command to setup environment.

$ virtualenv -p /usr/bin/python3.6 venv
$ source venv/bin/activate
$ pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
$ pip install -r requirements.txt
  • Download BERT Model Checkpoints

Before running the repo you must download the BERT-Base and BERT-Large checkpoints from here and unzip it to some directory $BERT_DIR. Then convert original TensorFlow checkpoints for BERT to a PyTorch saved file by running bash scripts/prepare_ckpt.sh <path-to-unzip-tf-bert-checkpoints>.

Apply Dice-Loss to NLP Tasks

In this repository, we apply dice loss to four NLP tasks, including

  1. machine reading comprehension
  2. paraphrase identification task
  3. named entity recognition
  4. text classification

1. Machine Reading Comprehension

Datasets

We take SQuAD 1.1 as an example. Before training, you should download a copy of the data from here.
And move the SQuAD 1.1 train train-v1.1.json and dev file dev-v1.1.json to the directory $DATA_DIR.

Train

We choose BERT as the backbone. During training, the task trainer BertForQA will automatically evaluate on dev set every $val_check_interval epoch, and save the dev predictions into files called $OUTPUT_DIR/predictions_<train-epoch>_<total-train-step>.json and $OUTPUT_DIR/nbest_predictions_<train-epoch>_<total-train-step>.json.

Run scripts/squad1/bert_<model-scale>_<loss-type>.sh to reproduce our experimental results.
The variable <model-scale> should take the value of [base, large].
The variable <loss-type> should take the value of [bce, focal, dice] which denotes fine-tuning BERT-Base with binary cross entropy loss, focal loss, dice loss , respectively.

  • Run bash scripts/squad1/bert_base_focal.sh to start training. After training, run bash scripts/squad1/eval_pred_file.sh $DATA_DIR $OUTPUT_DIR for focal loss.

  • Run bash scripts/squad1/bert_base_dice.sh to start training. After training, run bash scripts/squad1/eval_pred_file.sh $DATA_DIR $OUTPUT_DIR for dice loss.

Evaluate

To evaluate a model checkpoint, please run

python3 tasks/squad/evaluate_models.py \
--gpus="1" \
--path_to_model_checkpoint  $OUTPUT_DIR/epoch=2.ckpt \
--eval_batch_size <evaluate-batch-size>

After evaluation, prediction results predictions_dev.json and nbest_predictions_dev.json can be found in $OUTPUT_DIR

To evaluate saved predictions, please run

python3 tasks/squad/evaluate_predictions.py <path-to-dev-v1.1.json> <directory-to-prediction-files>

2. Paraphrase Identification Task

Datasets

We use MRPC (GLUE Version) as an example. Before running experiments, you should download and save the processed dataset files to $DATA_DIR.

Run bash scripts/prepare_mrpc_data.sh $DATA_DIR to download and process datasets for MPRC (GLUE Version) task.

Train

Please run scripts/glue_mrpc/bert_<model-scale>_<loss-type>.sh to train and evaluate on the dev set every $val_check_interval epoch. After training, the task trainer evaluates on the test set with the best checkpoint which achieves the highest F1-score on the dev set.
The variable <model-scale> should take the value of [base, large].
The variable <loss-type> should take the value of [focal, dice] which denotes fine-tuning BERT with focal loss, dice loss , respectively.

  • Run bash scripts/glue_mrpc/bert_large_focal.sh for focal loss.

  • Run bash scripts/glue_mrpc/bert_large_dice.sh for dice loss.

The evaluation results on the dev and test set are saved at $OUTPUT_DIR/eval_result_log.txt file.
The intermediate model checkpoints are saved at most $max_keep_ckpt times.

Evaluate

To evaluate a model checkpoint on test set, please run

bash scripts/glue_mrpc/eval.sh \
$OUTPUT_DIR \
epoch=*.ckpt

3. Named Entity Recognition

For NER, we use MRC-NER model as the backbone.
Processed datasets and model architecture can be found here.

Train

Please run scripts/<ner-datdaset-name>/bert_<loss-type>.sh to train and evaluate on the dev set every $val_check_interval epoch. After training, the task trainer evaluates on the test set with the best checkpoint.
The variable <ner-dataset-name> should take the value of [ner_enontonotes5, ner_zhmsra, ner_zhonto4].
The variable <loss-type> should take the value of [focal, dice] which denotes fine-tuning BERT with focal loss, dice loss , respectively.

For Chinese MSRA,

  • Run scripts/ner_zhmsra/bert_focal.sh for focal loss.

  • Run scripts/ner_zhmsra/bert_dice.sh for dice loss.

For Chinese OntoNotes4,

  • Run scripts/ner_zhonto4/bert_focal.sh for focal loss.

  • Run scripts/ner_zhonto4/bert_dice.sh for dice loss.

For English OntoNotes5,

  • Run scripts/ner_enontonotes5/bert_focal.sh. After training, you will get 91.12 Span-F1 on the test set.

  • Run scripts/ner_enontonotes5/bert_dice.sh. After training, you will get 92.01 Span-F1 on the test set.

Evaluate

To evaluate a model checkpoint, please run

CUDA_VISIBLE_DEVICES=0 python3 ${REPO_PATH}/tasks/mrc_ner/evaluate.py \
--gpus="1" \
--path_to_model_checkpoint $OUTPUT_DIR/epoch=2.ckpt

4. Text Classification

Datasets

We use TNews (Chinese Text Classification) as an example. Before running experiments, you should download and save the processed dataset files to $DATA_DIR.

Train

We choose BERT as the backbone.
Please run scripts/tnews/bert_<loss-type>.sh to train and evaluate on the dev set every $val_check_interval epoch. The variable <loss-type> should take the value of [focal, dice] which denotes fine-tuning BERT with focal loss, dice loss , respectively.

  • Run bash scripts/tnews/bert_focal.sh for focal loss.

  • Run bash scripts/tnews/bert_dice.sh for dice loss.

The intermediate model checkpoints are saved at most $max_keep_ckpt times.

Citation

If you find this repository useful , please cite the following:

@article{li2019dice,
  title={Dice loss for data-imbalanced NLP tasks},
  author={Li, Xiaoya and Sun, Xiaofei and Meng, Yuxian and Liang, Junjun and Wu, Fei and Li, Jiwei},
  journal={arXiv preprint arXiv:1911.02855},
  year={2019}
}

Contact

xiaoyalixy AT gmail.com OR xiaoya_li AT shannonai.com

Any discussions, suggestions and questions are welcome!

Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

âš¡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022