The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Overview

Dice Loss for NLP Tasks

This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020.

Setup

  • Install Package Dependencies

The code was tested in Python 3.6.9+ and Pytorch 1.7.1. If you are working on ubuntu GPU machine with CUDA 10.1, please run the following command to setup environment.

$ virtualenv -p /usr/bin/python3.6 venv
$ source venv/bin/activate
$ pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
$ pip install -r requirements.txt
  • Download BERT Model Checkpoints

Before running the repo you must download the BERT-Base and BERT-Large checkpoints from here and unzip it to some directory $BERT_DIR. Then convert original TensorFlow checkpoints for BERT to a PyTorch saved file by running bash scripts/prepare_ckpt.sh <path-to-unzip-tf-bert-checkpoints>.

Apply Dice-Loss to NLP Tasks

In this repository, we apply dice loss to four NLP tasks, including

  1. machine reading comprehension
  2. paraphrase identification task
  3. named entity recognition
  4. text classification

1. Machine Reading Comprehension

Datasets

We take SQuAD 1.1 as an example. Before training, you should download a copy of the data from here.
And move the SQuAD 1.1 train train-v1.1.json and dev file dev-v1.1.json to the directory $DATA_DIR.

Train

We choose BERT as the backbone. During training, the task trainer BertForQA will automatically evaluate on dev set every $val_check_interval epoch, and save the dev predictions into files called $OUTPUT_DIR/predictions_<train-epoch>_<total-train-step>.json and $OUTPUT_DIR/nbest_predictions_<train-epoch>_<total-train-step>.json.

Run scripts/squad1/bert_<model-scale>_<loss-type>.sh to reproduce our experimental results.
The variable <model-scale> should take the value of [base, large].
The variable <loss-type> should take the value of [bce, focal, dice] which denotes fine-tuning BERT-Base with binary cross entropy loss, focal loss, dice loss , respectively.

  • Run bash scripts/squad1/bert_base_focal.sh to start training. After training, run bash scripts/squad1/eval_pred_file.sh $DATA_DIR $OUTPUT_DIR for focal loss.

  • Run bash scripts/squad1/bert_base_dice.sh to start training. After training, run bash scripts/squad1/eval_pred_file.sh $DATA_DIR $OUTPUT_DIR for dice loss.

Evaluate

To evaluate a model checkpoint, please run

python3 tasks/squad/evaluate_models.py \
--gpus="1" \
--path_to_model_checkpoint  $OUTPUT_DIR/epoch=2.ckpt \
--eval_batch_size <evaluate-batch-size>

After evaluation, prediction results predictions_dev.json and nbest_predictions_dev.json can be found in $OUTPUT_DIR

To evaluate saved predictions, please run

python3 tasks/squad/evaluate_predictions.py <path-to-dev-v1.1.json> <directory-to-prediction-files>

2. Paraphrase Identification Task

Datasets

We use MRPC (GLUE Version) as an example. Before running experiments, you should download and save the processed dataset files to $DATA_DIR.

Run bash scripts/prepare_mrpc_data.sh $DATA_DIR to download and process datasets for MPRC (GLUE Version) task.

Train

Please run scripts/glue_mrpc/bert_<model-scale>_<loss-type>.sh to train and evaluate on the dev set every $val_check_interval epoch. After training, the task trainer evaluates on the test set with the best checkpoint which achieves the highest F1-score on the dev set.
The variable <model-scale> should take the value of [base, large].
The variable <loss-type> should take the value of [focal, dice] which denotes fine-tuning BERT with focal loss, dice loss , respectively.

  • Run bash scripts/glue_mrpc/bert_large_focal.sh for focal loss.

  • Run bash scripts/glue_mrpc/bert_large_dice.sh for dice loss.

The evaluation results on the dev and test set are saved at $OUTPUT_DIR/eval_result_log.txt file.
The intermediate model checkpoints are saved at most $max_keep_ckpt times.

Evaluate

To evaluate a model checkpoint on test set, please run

bash scripts/glue_mrpc/eval.sh \
$OUTPUT_DIR \
epoch=*.ckpt

3. Named Entity Recognition

For NER, we use MRC-NER model as the backbone.
Processed datasets and model architecture can be found here.

Train

Please run scripts/<ner-datdaset-name>/bert_<loss-type>.sh to train and evaluate on the dev set every $val_check_interval epoch. After training, the task trainer evaluates on the test set with the best checkpoint.
The variable <ner-dataset-name> should take the value of [ner_enontonotes5, ner_zhmsra, ner_zhonto4].
The variable <loss-type> should take the value of [focal, dice] which denotes fine-tuning BERT with focal loss, dice loss , respectively.

For Chinese MSRA,

  • Run scripts/ner_zhmsra/bert_focal.sh for focal loss.

  • Run scripts/ner_zhmsra/bert_dice.sh for dice loss.

For Chinese OntoNotes4,

  • Run scripts/ner_zhonto4/bert_focal.sh for focal loss.

  • Run scripts/ner_zhonto4/bert_dice.sh for dice loss.

For English OntoNotes5,

  • Run scripts/ner_enontonotes5/bert_focal.sh. After training, you will get 91.12 Span-F1 on the test set.

  • Run scripts/ner_enontonotes5/bert_dice.sh. After training, you will get 92.01 Span-F1 on the test set.

Evaluate

To evaluate a model checkpoint, please run

CUDA_VISIBLE_DEVICES=0 python3 ${REPO_PATH}/tasks/mrc_ner/evaluate.py \
--gpus="1" \
--path_to_model_checkpoint $OUTPUT_DIR/epoch=2.ckpt

4. Text Classification

Datasets

We use TNews (Chinese Text Classification) as an example. Before running experiments, you should download and save the processed dataset files to $DATA_DIR.

Train

We choose BERT as the backbone.
Please run scripts/tnews/bert_<loss-type>.sh to train and evaluate on the dev set every $val_check_interval epoch. The variable <loss-type> should take the value of [focal, dice] which denotes fine-tuning BERT with focal loss, dice loss , respectively.

  • Run bash scripts/tnews/bert_focal.sh for focal loss.

  • Run bash scripts/tnews/bert_dice.sh for dice loss.

The intermediate model checkpoints are saved at most $max_keep_ckpt times.

Citation

If you find this repository useful , please cite the following:

@article{li2019dice,
  title={Dice loss for data-imbalanced NLP tasks},
  author={Li, Xiaoya and Sun, Xiaofei and Meng, Yuxian and Liang, Junjun and Wu, Fei and Li, Jiwei},
  journal={arXiv preprint arXiv:1911.02855},
  year={2019}
}

Contact

xiaoyalixy AT gmail.com OR xiaoya_li AT shannonai.com

Any discussions, suggestions and questions are welcome!

Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022