The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Overview

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction

This repo contains the data sets and source code of our paper:

Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions [ACL 2021].

  • We introduce a new ABSA task, named Aspect-Category-Opinion-Sentiment Quadruple (ACOS) Extraction, to extract fine-grained ABSA Quadruples from product reviews;
  • We construct two new datasets for the task, with ACOS quadruple annotations, and benchmark the task with four baseline systems;
  • Our task and datasets provide a good support for discovering implicit opinion targets and implicit opinion expressions in product reviews.

Task

The Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction aims to extract all aspect-category-opinion-sentiment quadruples in a review sentence and provide full support for aspect-based sentiment analysis with implicit aspects and opinions.

Datasets

Two new datasets, Restaurant-ACOS and Laptop-ACOS, are constructed for the ACOS Quadruple Extraction task:

  • Restaurant-ACOS is an extension of the existing SemEval Restaurant dataset, based on which we add the annotation of implicit aspects, implicit opinions, and the quadruples;
  • Laptop-ACOS is a brand new one collected from the Amazon Laptop domain. It has twice size of the SemEval Loptop dataset, and is annotated with quadruples containing all explicit/implicit aspects and opinions.

The following table shows the comparison between our two ACOS Quadruple datasets and existing representative ABSA datasets.

Methods

We benchmark the ACOS Quadruple Extraction task with four baseline systems:

  • Double-Propagation-ACOS
  • JET-ACOS
  • TAS-BERT-ACOS
  • Extract-Classify-ACOS

We provided the source code of Extract-Classify-ACOS. The source code of the other three methods will be provided soon.

Overview of our Extract-Classify-ACOS method. The first step performs aspect-opinion co-extraction, and the second step predicts category-sentiment given the aspect-opinion pairs.

Results

The ACOS quadruple extraction performance of four different systems on the two datasets:

We further investigate the ability of different systems in addressing the implicit aspects/opinion problem:

Citation

If you use the data and code in your research, please cite our paper as follows:

@inproceedings{cai2021aspect,
  title={Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions},
  author={Cai, Hongjie and Xia, Rui and Yu, Jianfei},
  booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
  pages={340--350},
  year={2021}
}
Owner
NUSTM
Text Mining Group, Nanjing University of Science & Technology
NUSTM
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023