DaReCzech is a dataset for text relevance ranking in Czech

Overview

DaReCzech Dataset

DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs, which makes it one of the largest available datasets for this task.

The dataset was introduced in paper Siamese BERT-based Model for Web Search Relevance RankingEvaluated on a New Czech Dataset which has been accepted at the IAAI 2022 (Innovative Application Award).

Obtaining the Annotated Data

Please, first read a disclaimer that contains the terms of use. If you comply with them, send an email to [email protected] and the link to the dataset will be sent to you.

Overview

DaReCzech is divided into four parts:

  • Train-big (more than 1.4M records) – intended for training of a (neural) text relevance model
  • Train-small (97k records) – intended for GBRT training (with a text relevance feature trained on Train-big)
  • Dev (41k records)
  • Test (64k records)

Each set is distributed as a .tsv file with 6 columns:

  • ID – unique record ID
  • query – user query
  • url – URL of annotated document
  • doc – representation of the document under the URL, each document is represented using its title, URL and Body Text Extract (BTE) that was obtained using the internal module of our search engine
  • title: document title
  • label – the annotated relevance of the document to the query. There are 5 relevance labels ranging from 0 (the document is not useful for given query) to 1 (document is for given query useful)

The files are UTF-8 encoded. The values never contain a tab and are not quoted nor escaped – to load the dataset in pandas, use

import csv
import pandas as pd
pd.read_csv(path, sep='\t', quoting=csv.QUOTE_NONE)

Baselines

We provide code to train two BERT-based baseline models: a query-doc model (train_querydoc_model.py) and a siamese model (train_siamese_model.py).

Before running the scripts, install requirements that are listed in requirements.txt. The scripts were tested with Python 3.6.

pip install -r requirements.txt

Model Training

To train a query-doc model with default settings, run:

python train_querydoc_model.py train_big.tsv dev.tsv outputs

To train a siamese model without a teacher, run:

python train_siamese_model.py train_big.tsv dev.tsv outputs

To train a siamese model with a trained query-doc teacher, run:

python train_siamese_model.py train_big.tsv dev.tsv outputs --teacher path_to_query_doc_checkpoint

Note that example scripts run training with our (unsupervisedly) pretrained Small-E-Czech model.

Model Evaluation

To evaluate the trained query-doc model on test data, run:

python evaluate_model.py model_path test.tsv --is_querydoc

To evaluate the trained siamese model on test data, run:

python evaluate_model.py model_path test.tsv --is_siamese

Acknowledgements

If you use the dataset in your work, please cite the original paper:

@article{kocian2021siamese,
  title={Siamese BERT-based Model for Web Search Relevance RankingEvaluated on a New Czech Dataset},
  author={Kocián, Matěj and Náplava, Jakub and Štancl, Daniel and Kadlec, Vladimír},
  journal={arXiv preprint arXiv:2112.01810},
  year={2021}
}
Owner
Seznam.cz a.s.
Seznam.cz a.s.
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022