Training data extraction on GPT-2

Overview

Training data extraction from GPT-2

This repository contains code for extracting training data from GPT-2, following the approach outlined in the following paper:

Extracting Training Data from Large Language Models
Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel
USENIX Security Symposium, 2021
https://arxiv.org/abs/2012.07805

WARNING: The experiments in our paper relied on different non-public codebases, and also involved a large amount of manual labor. The code in this repository is thus not meant to exactly reproduce the paper's results, but instead to illustrate the paper's approach and to help others perform similar experiments.
The code in this repository has not been tested at the scale considered in the paper (600,000 generated samples) and might find memorized content at a lower (or higher) rate!

Installation

You will need transformers, pytorch and tqdm. The code was tested with transformers v3.0.2 and torch v1.5.1.

Extracting Data

Simply run

python3 extraction.py --N 1000 --batch-size 10

to generate 1000 samples with GPT-2 (XL). The samples are generated with top-k sampling (k=40) and an empty prompt.

The generated samples are ranked according to four membership inference metrics introduced in our paper:

  • The log perplexity of the GPT-2 (XL) model.
  • The ratio of the log perplexities of the GPT-2 (XL) model and the GPT-2 (S) model.
  • The ratio of the log perplexities for the generated sample and the same sample in lower-case letters.
  • The ratio of the log perplexity of GPT-2 (XL) and the sample's entropy estimated by Zlib.

The top 10 samples according to each metric are printed out. These samples are likely to contain verbatim text from the GPT-2 training data.

Conditioning on Internet text

In our paper, we found that prompting GPT-2 with small snippets of text taken from the Web increased the chance of the model generating memorized content.

To reproduce this attack, first download a slice of the Common Crawl dataset:

./download_cc.sh

This will download a sample of the Crawl from May 2021 (~350 MB) to a file called commoncrawl.warc.wet.

Then, we can run the extraction attack with Internet prompts:

python3 extraction.py --N 1000 --internet-sampling --wet-file commoncrawl.warc.wet

Sample outputs

Some interesting data that we extracted from GPT-2 can be found here.

Note that these were found among 600,000 generated samples. If you generate a much smaller number of samples (10,000 for example), you will be less likely to find memorized content.

Citation

If this code is useful in your research, you are encouraged to cite our academic paper:

@inproceedings{carlini21extracting,
  author = {Carlini, Nicholas and Tramer, Florian and Wallace, Eric and Jagielski, Matthew and Herbert-Voss, Ariel and Lee, Katherine and Roberts, Adam and Brown, Tom and Song, Dawn and Erlingsson, Ulfar and Oprea, Alina and Raffel, Colin},
  title = {Extracting Training Data from Large Language Models},
  booktitle = {USENIX Security Symposium},
  year = {2021},
  howpublished = {arXiv preprint arXiv:2012.07805},
  url = {https://arxiv.org/abs/2012.07805}
}
Owner
Florian Tramer
Florian Tramer
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023