With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

Overview

reluMIP

Embed ReLU neural networks into mixed-integer programs.

About

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified liner unit (ReLU) activation function. At the moment, only TensorFlow sequential models are supported. Interfaces to either the Pyomo or Gurobi modelling environments are offered.

ReLU ANNs can be used to approximate complex functions from data. In order to embed these functions into optimization problems, strong formulations of the network are needed. This package employs progressive bound tightening procedures to produce MIP encodings for ReLU networks. This allows the user to embed complex and nonlinear functions into mixed-integer programs. Note that the training of ReLU ANNs is not part of this package and has to be done by the user beforehand. A number of illustrative examples are provided to showcase the functionality of this package. For more detailed information, see the slide show in the docs/ folder of the reluMIP Git repository.

Installation

This package is part of PyPI. It can be installed through pip:

pip install reluMIP

After installing, you can use the examples provided in the examples/ folder to become familiar with the package.

Alternatively, you can clone the github repository:

git clone https://github.com/ChemEngAI/ReLU_ANN_MILP.git

You can install all requirements from the project root folder by calling:

pip install -r requirements.txt

You can add the root folder of the repository to your PYTHON_PATH, so that the package can be accessed from anywhere.

Note that in order to use the package, a compatible solver has to be installed. This can be Gurobi (with a valid license) or any MIP solver compatible with Pyomo (we recommend glpk). In our experience, the best performance is obtained when using the Gurobi interface.

Example usages

Two jupyter notebooks describing the use of the package are supplied in the examples/ folder of the Git repository. There, an MIP formulation of a ReLU ANN - trained on a nonliner, nonconvex function - is used to find the global minimum of the network response surface. If you installed the package through pip, you can simply download the example files that you are interested in.

Related work on NLP formulations of ANNs

In this tool, ReLU ANNs are formulated as MILPs. Notably, ANNs can also be formulated as nonlinear problems (NLPs) and solved through deterministic gloabl optimization (Schweidtmann and Mitsos (2019)). Please visit the MeLOn toolbox for more information.

How to cite this work

Please cite our Zenodo DOI if you use this code:

@software{reluMIP.2021,
  title={reluMIP: Open Source Tool for MILP Optimization of ReLU Neural Networks},
  author={Lueg, Laurens and Grimstad, Bjarne and Mitsos, Alexander and Schweidtmann, Artur M.},
  year={2021},
  doi={https://doi.org/10.5281/zenodo.5601907},
  url = {https://github.com/ChemEngAI/ReLU_ANN_MILP},
  version = {1.0.0}
}

References

Grimstad, B., Andersson, H. (2019). ReLU networks as surrogate models in mixed-integer linear programs. Computers & Chemical Engineering (Volume 131, 106580).

Schweidtmann, A. M., & Mitsos, A. (2019). Deterministic global optimization with artificial neural networks embedded. Journal of Optimization Theory and Applications (Volume 180(3), 925-948).

You might also like...
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Unofficial pytorch-lightning implement of Mip-NeRF
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

Implementation of parameterized soft-exponential activation function.
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network architectures, including ResNet, GoogLeNet, and Inception-V3.

Releases(v1.0.0)
Owner
ChemEngAI
We bridge chemical engineering and artificial intelligence.
ChemEngAI
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022