Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

Overview

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset

Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

grafik

Paper available under this LINK

grafik

The training data split of the SMDD data can be downloaded from this LINK (please share your name, affiliation, and official email in the request form).

The testing data split of the SMDD data can be downloaded from: (to be uploaded)

The pretrained weight of MixFaceNet-MAD model on SMDD training data can be downloaded from this LINK (please share your name, affiliation, and official email in the request form).

Data preparation

Our face data is preprocessed by the face detection and cropping. The implementation can be found in image_preprocess.py file. Moreover, for further training and test, the corresponding CSV files should be generated. The format of the dataset CSV file in our case is:

image_path,label
/image_dir/image_file_1.png, bonafide
/image_dir/image_file_2.png, bonafide
/image_dir/image_file_3.png, attack
/image_dir/image_file_4.png, attack

Experiment

The main.py file can be used for training and test:

  1. When training and test:
    python main.py \
      --train_csv_path 'train.csv' \
      --test_csv_path 'test.csv' \
      --model_path 'mixfacenet_SMDD.pth' \
      --is_train True \
      --is_test True \
      --output_dir 'output' \
    
  2. When test by using pretrained weight, first download the model and give the model path:
    python main.py \
      --test_csv_path 'test.csv' \
      --model_path 'mixfacenet_SMDD.pth' \
      --is_train False \
      --is_test True \
      --output_dir 'output' \
    

More detailed information can be found in main.py.

Citation:

If you use SMDD dataset, please cite the following paper:

@article{SMDD,
  author    = {Naser Damer and
               C{\'{e}}sar Augusto Fontanillo L{\'{o}}pez and
               Meiling Fang and
               No{\'{e}}mie Spiller and
               Minh Vu Pham and
               Fadi Boutros},
  title     = {Privacy-friendly Synthetic Data for the Development of Face Morphing
               Attack Detectors},
  journal   = {CoRR},
  volume    = {abs/2203.06691},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2203.06691},
  doi       = {10.48550/arXiv.2203.06691},
  eprinttype = {arXiv},
  eprint    = {2203.06691},
}

If you use the MixFaceNet-MAD, please cite the paper above and the original MixFaceNet paper (repo, paper):

@inproceedings{mixfacenet,
  author    = {Fadi Boutros and
               Naser Damer and
               Meiling Fang and
               Florian Kirchbuchner and
               Arjan Kuijper},
  title     = {MixFaceNets: Extremely Efficient Face Recognition Networks},
  booktitle = {International {IEEE} Joint Conference on Biometrics, {IJCB} 2021,
               Shenzhen, China, August 4-7, 2021},
  pages     = {1--8},
  publisher = {{IEEE}},
  year      = {2021},
  url       = {https://doi.org/10.1109/IJCB52358.2021.9484374},
  doi       = {10.1109/IJCB52358.2021.9484374},
}

License:

The dataset, the implementation, or trained models, use is restricted to research purpuses. The use of the dataset or the implementation/trained models for product development or product competetions (incl. NIST FRVT MORPH) is not allowed. This project is licensed under the terms of the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. Copyright (c) 2020 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022