Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

Overview

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset

Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

grafik

Paper available under this LINK

grafik

The training data split of the SMDD data can be downloaded from this LINK (please share your name, affiliation, and official email in the request form).

The testing data split of the SMDD data can be downloaded from: (to be uploaded)

The pretrained weight of MixFaceNet-MAD model on SMDD training data can be downloaded from this LINK (please share your name, affiliation, and official email in the request form).

Data preparation

Our face data is preprocessed by the face detection and cropping. The implementation can be found in image_preprocess.py file. Moreover, for further training and test, the corresponding CSV files should be generated. The format of the dataset CSV file in our case is:

image_path,label
/image_dir/image_file_1.png, bonafide
/image_dir/image_file_2.png, bonafide
/image_dir/image_file_3.png, attack
/image_dir/image_file_4.png, attack

Experiment

The main.py file can be used for training and test:

  1. When training and test:
    python main.py \
      --train_csv_path 'train.csv' \
      --test_csv_path 'test.csv' \
      --model_path 'mixfacenet_SMDD.pth' \
      --is_train True \
      --is_test True \
      --output_dir 'output' \
    
  2. When test by using pretrained weight, first download the model and give the model path:
    python main.py \
      --test_csv_path 'test.csv' \
      --model_path 'mixfacenet_SMDD.pth' \
      --is_train False \
      --is_test True \
      --output_dir 'output' \
    

More detailed information can be found in main.py.

Citation:

If you use SMDD dataset, please cite the following paper:

@article{SMDD,
  author    = {Naser Damer and
               C{\'{e}}sar Augusto Fontanillo L{\'{o}}pez and
               Meiling Fang and
               No{\'{e}}mie Spiller and
               Minh Vu Pham and
               Fadi Boutros},
  title     = {Privacy-friendly Synthetic Data for the Development of Face Morphing
               Attack Detectors},
  journal   = {CoRR},
  volume    = {abs/2203.06691},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2203.06691},
  doi       = {10.48550/arXiv.2203.06691},
  eprinttype = {arXiv},
  eprint    = {2203.06691},
}

If you use the MixFaceNet-MAD, please cite the paper above and the original MixFaceNet paper (repo, paper):

@inproceedings{mixfacenet,
  author    = {Fadi Boutros and
               Naser Damer and
               Meiling Fang and
               Florian Kirchbuchner and
               Arjan Kuijper},
  title     = {MixFaceNets: Extremely Efficient Face Recognition Networks},
  booktitle = {International {IEEE} Joint Conference on Biometrics, {IJCB} 2021,
               Shenzhen, China, August 4-7, 2021},
  pages     = {1--8},
  publisher = {{IEEE}},
  year      = {2021},
  url       = {https://doi.org/10.1109/IJCB52358.2021.9484374},
  doi       = {10.1109/IJCB52358.2021.9484374},
}

License:

The dataset, the implementation, or trained models, use is restricted to research purpuses. The use of the dataset or the implementation/trained models for product development or product competetions (incl. NIST FRVT MORPH) is not allowed. This project is licensed under the terms of the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. Copyright (c) 2020 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt.

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022