Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

Overview

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset

Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

grafik

Paper available under this LINK

grafik

The training data split of the SMDD data can be downloaded from this LINK (please share your name, affiliation, and official email in the request form).

The testing data split of the SMDD data can be downloaded from: (to be uploaded)

The pretrained weight of MixFaceNet-MAD model on SMDD training data can be downloaded from this LINK (please share your name, affiliation, and official email in the request form).

Data preparation

Our face data is preprocessed by the face detection and cropping. The implementation can be found in image_preprocess.py file. Moreover, for further training and test, the corresponding CSV files should be generated. The format of the dataset CSV file in our case is:

image_path,label
/image_dir/image_file_1.png, bonafide
/image_dir/image_file_2.png, bonafide
/image_dir/image_file_3.png, attack
/image_dir/image_file_4.png, attack

Experiment

The main.py file can be used for training and test:

  1. When training and test:
    python main.py \
      --train_csv_path 'train.csv' \
      --test_csv_path 'test.csv' \
      --model_path 'mixfacenet_SMDD.pth' \
      --is_train True \
      --is_test True \
      --output_dir 'output' \
    
  2. When test by using pretrained weight, first download the model and give the model path:
    python main.py \
      --test_csv_path 'test.csv' \
      --model_path 'mixfacenet_SMDD.pth' \
      --is_train False \
      --is_test True \
      --output_dir 'output' \
    

More detailed information can be found in main.py.

Citation:

If you use SMDD dataset, please cite the following paper:

@article{SMDD,
  author    = {Naser Damer and
               C{\'{e}}sar Augusto Fontanillo L{\'{o}}pez and
               Meiling Fang and
               No{\'{e}}mie Spiller and
               Minh Vu Pham and
               Fadi Boutros},
  title     = {Privacy-friendly Synthetic Data for the Development of Face Morphing
               Attack Detectors},
  journal   = {CoRR},
  volume    = {abs/2203.06691},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2203.06691},
  doi       = {10.48550/arXiv.2203.06691},
  eprinttype = {arXiv},
  eprint    = {2203.06691},
}

If you use the MixFaceNet-MAD, please cite the paper above and the original MixFaceNet paper (repo, paper):

@inproceedings{mixfacenet,
  author    = {Fadi Boutros and
               Naser Damer and
               Meiling Fang and
               Florian Kirchbuchner and
               Arjan Kuijper},
  title     = {MixFaceNets: Extremely Efficient Face Recognition Networks},
  booktitle = {International {IEEE} Joint Conference on Biometrics, {IJCB} 2021,
               Shenzhen, China, August 4-7, 2021},
  pages     = {1--8},
  publisher = {{IEEE}},
  year      = {2021},
  url       = {https://doi.org/10.1109/IJCB52358.2021.9484374},
  doi       = {10.1109/IJCB52358.2021.9484374},
}

License:

The dataset, the implementation, or trained models, use is restricted to research purpuses. The use of the dataset or the implementation/trained models for product development or product competetions (incl. NIST FRVT MORPH) is not allowed. This project is licensed under the terms of the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. Copyright (c) 2020 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt.

Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Saeed Lotfi 28 Dec 12, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022