Implementation of parameterized soft-exponential activation function.

Overview

Soft-Exponential-Activation-Function:

Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are the same for all neurons initially starting with -0.01. This activation function revolves around the idea of a "soft" exponential function. The soft-exponential function is a function that is very similar to the exponential function, but it is not as steep at the beginning and it is more gradual at the end. The soft-exponential function is a good choice for neural networks that have a lot of connections and a lot of neurons.

This activation function is under the idea that the function is logarithmic, linear, exponential and smooth.

The equation for the soft-exponential function is:

$$ f(\alpha,x)= \left{ \begin{array}{ll} -\frac{ln(1-\alpha(x + \alpha))}{\alpha} & \alpha < 0\ x & \alpha = 0 \ \frac{e^{\alpha x} - 1}{\alpha} + \alpha & \alpha > 0 \ \end{array} \right. $$

Problems faced:

1. Misinformation about the function

From a paper by A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks, here in Figure 2, the soft-exponential function is shown as a logarithmic function. This is not the case.

Figure Given

The real figure should be shown here:

Figure Truth

Here we can see in some cases the soft-exponential function is undefined for some values of $\alpha$,$x$ and $\alpha$,$x$ is not a constant.

2. Negative values inside logarithm

Here comes the tricky part. The soft-exponential function is defined for all values of $\alpha$ and $x$. However, the logarithm is not defined for negative values.

In the issues under Keras, one of the person has suggested to use the following function $sinh^{-1}()$ instead of the $\ln()$.

3. Initialization of alpha

Starting with an initial value of -0.01, the soft-exponential function was steep at the beginning and it is more gradual at the end. This was a good idea.

Performance:

First picture showing the accuracy of the soft-exponential function.

Figure 1

This shows the loss of the soft-exponential function.

Figure 2

Model Structure:

_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 28, 28)]          0         
                                                                 
 flatten (Flatten)           (None, 784)               0         
                                                                 
 dense_layer (Dense_layer)   (None, 128)               100480    
                                                                 
 parametric_soft_exp (Parame  (None, 128)              128       
 tricSoftExp)                                                    
                                                                 
 dense_layer_1 (Dense_layer)  (None, 128)              16512     
                                                                 
 parametric_soft_exp_1 (Para  (None, 128)              128       
 metricSoftExp)                                                  
                                                                 
 dense (Dense)               (None, 10)                1290      
                                                                 
=================================================================
Total params: 118,538
Trainable params: 118,538
Non-trainable params: 0

Acknowledgements:

Owner
Shuvrajeet Das
Tech Guy with a dedicated interest in learning new kinds of stuff. Sophomore @ 2021.
Shuvrajeet Das
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022