Implementation of parameterized soft-exponential activation function.

Overview

Soft-Exponential-Activation-Function:

Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are the same for all neurons initially starting with -0.01. This activation function revolves around the idea of a "soft" exponential function. The soft-exponential function is a function that is very similar to the exponential function, but it is not as steep at the beginning and it is more gradual at the end. The soft-exponential function is a good choice for neural networks that have a lot of connections and a lot of neurons.

This activation function is under the idea that the function is logarithmic, linear, exponential and smooth.

The equation for the soft-exponential function is:

$$ f(\alpha,x)= \left{ \begin{array}{ll} -\frac{ln(1-\alpha(x + \alpha))}{\alpha} & \alpha < 0\ x & \alpha = 0 \ \frac{e^{\alpha x} - 1}{\alpha} + \alpha & \alpha > 0 \ \end{array} \right. $$

Problems faced:

1. Misinformation about the function

From a paper by A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks, here in Figure 2, the soft-exponential function is shown as a logarithmic function. This is not the case.

Figure Given

The real figure should be shown here:

Figure Truth

Here we can see in some cases the soft-exponential function is undefined for some values of $\alpha$,$x$ and $\alpha$,$x$ is not a constant.

2. Negative values inside logarithm

Here comes the tricky part. The soft-exponential function is defined for all values of $\alpha$ and $x$. However, the logarithm is not defined for negative values.

In the issues under Keras, one of the person has suggested to use the following function $sinh^{-1}()$ instead of the $\ln()$.

3. Initialization of alpha

Starting with an initial value of -0.01, the soft-exponential function was steep at the beginning and it is more gradual at the end. This was a good idea.

Performance:

First picture showing the accuracy of the soft-exponential function.

Figure 1

This shows the loss of the soft-exponential function.

Figure 2

Model Structure:

_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 28, 28)]          0         
                                                                 
 flatten (Flatten)           (None, 784)               0         
                                                                 
 dense_layer (Dense_layer)   (None, 128)               100480    
                                                                 
 parametric_soft_exp (Parame  (None, 128)              128       
 tricSoftExp)                                                    
                                                                 
 dense_layer_1 (Dense_layer)  (None, 128)              16512     
                                                                 
 parametric_soft_exp_1 (Para  (None, 128)              128       
 metricSoftExp)                                                  
                                                                 
 dense (Dense)               (None, 10)                1290      
                                                                 
=================================================================
Total params: 118,538
Trainable params: 118,538
Non-trainable params: 0

Acknowledgements:

Owner
Shuvrajeet Das
Tech Guy with a dedicated interest in learning new kinds of stuff. Sophomore @ 2021.
Shuvrajeet Das
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021